Asli, Majid and Stathopoulos, Panagiotis and Paschereit, Christian Oliver (2020) Aerodynamic investigation of guide vane configurations downstream a rotating detonation combustor. Journal of Engineering for Gas Turbines and Power. American Society of Mechanical Engineers (ASME). doi: 10.1115/1.4049188. ISSN 0742-4795.
![]() |
PDF
- Postprint version (accepted manuscript)
5MB |
Abstract
Any outlet restriction downstream of Pressure Gain Combustion (PGC), such as turbine blades, affects its flow field and may cause additional thermodynamic losses. The unsteadiness in the form of pressure, temperature and velocity vector fluctuations has a negative impact on the operation of conventional turbines. Additionally, experimental measurements and data acquisition present researchers with challenges that have to do mostly with the high temperature exhaust of PGC and the high frequency of its operation. Nevertheless, numerical simulations can provide important insights into PGC exhaust flow and its interaction with turbine blades. In this paper, a Rotating Detonation Combustor (RDC) and a row of nozzle guide vanes have been modeled based on the data from literature and an available experimental setup. URANS simulations were done for five guide vane configurations with different geometrical parameters to investigate the effect of solidity and blade type representing different outlet restrictions on the RDC exhaust flow. The results analyzed the connection between total pressure loss and the vanes solidity and thickness to chord ratio. It is observed that more than 57% of the upstream velocity angle fluctuation amplitude was damped by the vanes. Furthermore, the area reduction was found to be the significant driving factor for damping the velocity angle fluctuations, whether in the form of solidity or thickness on chord ratio increment. This RDC exhaust flow investigation is an important primary step from a turbomachinery standpoint, which provided details of blade behavior in such an unsteady flow field.
Item URL in elib: | https://elib.dlr.de/139731/ | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Document Type: | Article | ||||||||||||||||
Title: | Aerodynamic investigation of guide vane configurations downstream a rotating detonation combustor | ||||||||||||||||
Authors: |
| ||||||||||||||||
Date: | 21 November 2020 | ||||||||||||||||
Journal or Publication Title: | Journal of Engineering for Gas Turbines and Power | ||||||||||||||||
Refereed publication: | Yes | ||||||||||||||||
Open Access: | Yes | ||||||||||||||||
Gold Open Access: | No | ||||||||||||||||
In SCOPUS: | Yes | ||||||||||||||||
In ISI Web of Science: | Yes | ||||||||||||||||
DOI: | 10.1115/1.4049188 | ||||||||||||||||
Publisher: | American Society of Mechanical Engineers (ASME) | ||||||||||||||||
ISSN: | 0742-4795 | ||||||||||||||||
Status: | Published | ||||||||||||||||
Keywords: | Pressure gain combustion, turbine design, unsteady flows, thermodynamics, Computational fluid dynamics | ||||||||||||||||
HGF - Research field: | Energy | ||||||||||||||||
HGF - Program: | Energy Efficiency, Materials and Resources | ||||||||||||||||
HGF - Program Themes: | Other | ||||||||||||||||
DLR - Research area: | Energy | ||||||||||||||||
DLR - Program: | E SP - Energy Storage | ||||||||||||||||
DLR - Research theme (Project): | E - Low-Carbon Industrial Processes (old) | ||||||||||||||||
Location: | Cottbus | ||||||||||||||||
Institutes and Institutions: | Institute of Low-Carbon Industrial Processes | ||||||||||||||||
Deposited By: | Klinkmüller, Maike | ||||||||||||||||
Deposited On: | 04 Jan 2021 11:04 | ||||||||||||||||
Last Modified: | 04 Jan 2021 11:04 |
Repository Staff Only: item control page