Cano-Pleite, Eduardo and Rubio-Rubio, Mariano and Riedel, Uwe and Soria-Verdugo, Antonio (2020) Evaluation of the number of first-order reactions required to accurately model biomass pyrolysis. Chemical Engineering Journal. Elsevier. doi: 10.1016/j.cej.2020.127291. ISSN 1385-8947. (In Press)
Full text not available from this repository.
Abstract
Thermogravimetric analysis (TGA) experimental measurements, combined with modeling techniques, are widely employed for the characterization of the pyrolysis process of all kinds of biomass. The present work evaluates the number of reactions required to accurately model the pyrolysis process of lignocellulosic biomass, microalgae, and sewage sludge. A model with different number of parallel first-order reactions, from a single reaction up to ten reactions, is tested to fit the experimental TGA pyrolysis results, obtained for constant heating rates, and to determine the required optimal number of reactions for each type of biomass. The results show that the optimal number of reactions to precisely model the kinetics of lignocellulosic biomass is 5, whereas a model of 6 reactions is optimal for the characterization of microalgae and 8 reactions are required to accurately model the pyrolysis of sewage sludge. The outcome of the model, expressed in terms of the pyrolysis kinetics parameters and the relative contribution of each of the parallel reactions on the overall process, can be successfully extrapolated to the use of inverse exponential temperature increases, which are characteristic of pyrolysis processes occurring in isothermal reactors. Under these circumstances, the model is also capable of accurately reproducing the experimental results for all the different maximum temperatures and exponential temperature increases tested, demonstrating its robustness and applicability to pyrolysis processes occurring under non-linear temperature increases.
Item URL in elib: | https://elib.dlr.de/139539/ | ||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Document Type: | Article | ||||||||||||||||||||
Title: | Evaluation of the number of first-order reactions required to accurately model biomass pyrolysis | ||||||||||||||||||||
Authors: |
| ||||||||||||||||||||
Date: | 18 October 2020 | ||||||||||||||||||||
Journal or Publication Title: | Chemical Engineering Journal | ||||||||||||||||||||
Refereed publication: | Yes | ||||||||||||||||||||
Open Access: | No | ||||||||||||||||||||
Gold Open Access: | No | ||||||||||||||||||||
In SCOPUS: | Yes | ||||||||||||||||||||
In ISI Web of Science: | Yes | ||||||||||||||||||||
DOI: | 10.1016/j.cej.2020.127291 | ||||||||||||||||||||
Publisher: | Elsevier | ||||||||||||||||||||
ISSN: | 1385-8947 | ||||||||||||||||||||
Status: | In Press | ||||||||||||||||||||
Keywords: | Biomass pyrolysis; Kinetic modeling; Microalgae; Lignocellulosic biomass; Sewage sludge | ||||||||||||||||||||
HGF - Research field: | Energy | ||||||||||||||||||||
HGF - Program: | Energy Efficiency, Materials and Resources | ||||||||||||||||||||
HGF - Program Themes: | Other | ||||||||||||||||||||
DLR - Research area: | Energy | ||||||||||||||||||||
DLR - Program: | E SP - Energy Storage | ||||||||||||||||||||
DLR - Research theme (Project): | E - Low-Carbon Industrial Processes (old) | ||||||||||||||||||||
Location: | Cottbus | ||||||||||||||||||||
Institutes and Institutions: | Institute of Low-Carbon Industrial Processes | ||||||||||||||||||||
Deposited By: | Klinkmüller, Maike | ||||||||||||||||||||
Deposited On: | 04 Jan 2021 10:47 | ||||||||||||||||||||
Last Modified: | 11 Jul 2023 08:22 |
Repository Staff Only: item control page