Gerdes, Ingrid und Temme, Annette (2020) Traffic Network Identification Using Trajectory Intersection Clustering. Aerospace, 7 (12). Multidisciplinary Digital Publishing Institute (MDPI). doi: 10.3390/aerospace7120175. ISSN 2226-4310.
PDF
- Postprintversion (akzeptierte Manuskriptversion)
1MB |
Offizielle URL: https://www.mdpi.com/2226-4310/7/12/175
Kurzfassung
The current airspace route system consists mainly of pre-defined routes with a low number of intersections to facilitate air traffic controllers to oversee the traffic. Our aim is a method to create an artificial and reliable route network based on planned or as-flown trajectories. The application possibilities of the resulting network are manifold, reaching from the assessment of new air traffic management (ATM) strategies or historical data to a basis for simulation systems. Trajectories are defined as sequences of common points at intersections with other trajectories. All common points of a traffic sample are clustered, and, after further optimization, the cluster centers are used as nodes in the new main-flow network. To build almost-realistic flight trajectories based on this network, additional parameters such as speed and altitude are added to the nodes and the possibility to take detours into account to avoid congested areas is introduced. As optimization criteria, the trajectory length and the structural complexity of the main-flow system are used. Based on these criteria, we develop a new cost function for the optimization process. In addition, we show how different traffic situations are covered by the network. To illustrate the capabilities of our approach, traffic is exemplarily divided into separate classes and class-dependent parameters are assigned. Applied to two real traffic scenarios, the approach was able to emulate the underlying route systems with a difference in median trajectory length of 0.2%, resp. 0.5% compared to the original routes.
elib-URL des Eintrags: | https://elib.dlr.de/139515/ | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Zeitschriftenbeitrag | ||||||||||||
Titel: | Traffic Network Identification Using Trajectory Intersection Clustering | ||||||||||||
Autoren: |
| ||||||||||||
Datum: | Dezember 2020 | ||||||||||||
Erschienen in: | Aerospace | ||||||||||||
Referierte Publikation: | Ja | ||||||||||||
Open Access: | Ja | ||||||||||||
Gold Open Access: | Ja | ||||||||||||
In SCOPUS: | Ja | ||||||||||||
In ISI Web of Science: | Ja | ||||||||||||
Band: | 7 | ||||||||||||
DOI: | 10.3390/aerospace7120175 | ||||||||||||
Herausgeber: |
| ||||||||||||
Verlag: | Multidisciplinary Digital Publishing Institute (MDPI) | ||||||||||||
Name der Reihe: | Topical Collection "Air Transportation—Operations and Management" | ||||||||||||
ISSN: | 2226-4310 | ||||||||||||
Status: | veröffentlicht | ||||||||||||
Stichwörter: | trajectory clustering; air traffic simulation; DBSCAN; airspace route network; common points | ||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||
HGF - Programm: | Luftfahrt | ||||||||||||
HGF - Programmthema: | Luftverkehrsmanagement und Flugbetrieb | ||||||||||||
DLR - Schwerpunkt: | Luftfahrt | ||||||||||||
DLR - Forschungsgebiet: | L AO - Air Traffic Management and Operation | ||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | L - Effiziente Flugführung (alt) | ||||||||||||
Standort: | Braunschweig | ||||||||||||
Institute & Einrichtungen: | Institut für Flugführung > Lotsenassistenz Institut für Flugführung > Pilotenassistenz | ||||||||||||
Hinterlegt von: | Gerdes, Ingrid | ||||||||||||
Hinterlegt am: | 11 Dez 2020 08:45 | ||||||||||||
Letzte Änderung: | 24 Okt 2023 15:14 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags