elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

FGCN: Deep Feature-Based Graph Convolutional Network for Semantic Segmentation of Urban 3D Point Clouds

Khan, Saqib Ali und Shi, Yilei und Shahzad, Muhammad und Zhu, Xiao Xiang (2020) FGCN: Deep Feature-Based Graph Convolutional Network for Semantic Segmentation of Urban 3D Point Clouds. In: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, CVPRW 2020, Seiten 778-787. IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) Workshops, 2020, Virtual event. doi: 10.1109/CVPRW50498.2020.00107. ISBN 978-1-7281-9360-1. ISSN 2160-7508.

Dieses Archiv kann nicht den Volltext zur Verfügung stellen.

Offizielle URL: https://openaccess.thecvf.com/content_CVPRW_2020/html/w11/Khan_FGCN_Deep_Feature-Based_Graph_Convolutional_Network_for_Semantic_Segmentation_of_CVPRW_2020_paper.html

Kurzfassung

Directly processing 3D point clouds using convolutional neural networks (CNNs) is a highly challenging task primarily due to the lack of explicit neighborhood relationship between points in 3D space. Several researchers have tried to cope with this problem using a preprocessing step of voxelization. Although, this allows to translate the existing CNN architectures to process 3D point clouds but, in addition to computational and memory constraints, it poses quantization artifacts which limits the accurate inference of the underlying object's structure in the illuminated scene. In this paper, we have introduced a more stable and effective end-to-end architecture to classify raw 3D point clouds from indoor and outdoor scenes. In the proposed methodology, we encode the spatial arrangement of neighbouring 3D points inside an undirected symmetrical graph, which is passed along with features extracted from a 2D CNN to a Graph Convolutional Network (GCN) that contains three layers of localized graph convolutions to generate a complete segmentation map. The proposed network achieves on par or even better than state-of-the-art results on tasks like semantic scene parsing, part segmentation and urban classification on three standard benchmark datasets.

elib-URL des Eintrags:https://elib.dlr.de/139446/
Dokumentart:Konferenzbeitrag (Vortrag)
Titel:FGCN: Deep Feature-Based Graph Convolutional Network for Semantic Segmentation of Urban 3D Point Clouds
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Khan, Saqib AliNUSTNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Shi, Yileiyilei.shi (at) tum.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Shahzad, MuhammadMuhammad.Shahzad (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Zhu, Xiao Xiangxiao.zhu (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Datum:Juni 2020
Erschienen in:2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, CVPRW 2020
Referierte Publikation:Ja
Open Access:Nein
Gold Open Access:Nein
In SCOPUS:Ja
In ISI Web of Science:Ja
DOI:10.1109/CVPRW50498.2020.00107
Seitenbereich:Seiten 778-787
ISSN:2160-7508
ISBN:978-1-7281-9360-1
Status:veröffentlicht
Stichwörter:deep learning, artificial intelligence, remote sensing, CN, Graph Convolutional Network
Veranstaltungstitel:IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) Workshops
Veranstaltungsort:Virtual event
Veranstaltungsart:internationale Konferenz
Veranstaltungsdatum:2020
Veranstalter :IEEE
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Raumfahrt
HGF - Programmthema:Erdbeobachtung
DLR - Schwerpunkt:Raumfahrt
DLR - Forschungsgebiet:R EO - Erdbeobachtung
DLR - Teilgebiet (Projekt, Vorhaben):R - Fernerkundung u. Geoforschung
Standort: Oberpfaffenhofen
Institute & Einrichtungen:Institut für Methodik der Fernerkundung > EO Data Science
Hinterlegt von: Bratasanu, Ion-Dragos
Hinterlegt am:18 Dez 2020 12:57
Letzte Änderung:24 Apr 2024 20:40

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.