Zhu, Yongchao and Tao, Tingye and Yu, Kegen and Qu, Xiaochuan and Li, Shuiping and Wickert, Jens and Semmling, Maximilian (2020) Machine Learning-Aided Sea Ice Monitoring Using Feature Sequences Extracted from Spaceborne GNSS-Reflectometry Data. Remote Sensing, 12 (3751). Multidisciplinary Digital Publishing Institute (MDPI). doi: 10.3390/rs12223751. ISSN 2072-4292.
![]() |
PDF
- Only accessible within DLR
- Preprint version (submitted draft)
2MB |
Abstract
Two effective machine learning-aided sea ice monitoring methods are investigated using 42 months of spaceborne Global Navigation Satellite System-Reflectometry (GNSS-R) data collected by the TechDemoSat-1 (TDS-1). The two-dimensional delay waveforms with different Doppler spread characteristics are applied to extract six features, which are combined to monitor sea ice using the decision tree (DT) and random forest (RF) algorithms. Firstly, the feature sequences are used as input variables and sea ice concentration (SIC) data from the Advanced Microwave Space Radiometer-2 (AMSR-2) are applied as targeted output to train the sea ice monitoring model. Hereafter, the performance of the proposed method is evaluated through comparing with the sea ice edge (SIE) data from the Special Sensor Microwave Imager Sounder (SSMIS) data. The DT- and RF-based methods achieve an overall accuracy of 97.51% and 98.03%, respectively, in the Arctic region and 95.46% and 95.96%, respectively, in the Antarctic region. The DT- and RF-based methods achieve similar accuracies, while the Kappa coefficient of RF-based approach is slightly larger than that of the DT-based approach, which indicates that the RF-based method outperforms the DT-based method. The results show the potential of monitoring sea ice using machine learning-aided GNSS-R approaches.
Item URL in elib: | https://elib.dlr.de/139427/ | ||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Document Type: | Article | ||||||||||||||||||||||||
Title: | Machine Learning-Aided Sea Ice Monitoring Using Feature Sequences Extracted from Spaceborne GNSS-Reflectometry Data | ||||||||||||||||||||||||
Authors: |
| ||||||||||||||||||||||||
Date: | November 2020 | ||||||||||||||||||||||||
Journal or Publication Title: | Remote Sensing | ||||||||||||||||||||||||
Refereed publication: | Yes | ||||||||||||||||||||||||
Open Access: | Yes | ||||||||||||||||||||||||
Gold Open Access: | Yes | ||||||||||||||||||||||||
In SCOPUS: | Yes | ||||||||||||||||||||||||
In ISI Web of Science: | Yes | ||||||||||||||||||||||||
Volume: | 12 | ||||||||||||||||||||||||
DOI: | 10.3390/rs12223751 | ||||||||||||||||||||||||
Publisher: | Multidisciplinary Digital Publishing Institute (MDPI) | ||||||||||||||||||||||||
ISSN: | 2072-4292 | ||||||||||||||||||||||||
Status: | Published | ||||||||||||||||||||||||
Keywords: | Delay-Doppler Map (DDM); Global Navigation Satellite System-Reflectometry (GNSS-R); decision tree; random forest; sea ice monitoring | ||||||||||||||||||||||||
HGF - Research field: | Aeronautics, Space and Transport | ||||||||||||||||||||||||
HGF - Program: | Space | ||||||||||||||||||||||||
HGF - Program Themes: | Communication and Navigation | ||||||||||||||||||||||||
DLR - Research area: | Raumfahrt | ||||||||||||||||||||||||
DLR - Program: | R KN - Kommunikation und Navigation | ||||||||||||||||||||||||
DLR - Research theme (Project): | R - Vorhaben Ionosphäre (old) | ||||||||||||||||||||||||
Location: | Neustrelitz | ||||||||||||||||||||||||
Institutes and Institutions: | Institute for Solar-Terrestrial Physics > Space Weather Observation | ||||||||||||||||||||||||
Deposited By: | Semmling, Dr. Maximilian | ||||||||||||||||||||||||
Deposited On: | 25 Jan 2021 10:49 | ||||||||||||||||||||||||
Last Modified: | 25 Jan 2021 10:49 |
Repository Staff Only: item control page