Denninger, Maximilian und Triebel, Rudolph (2020) 3D Scene Reconstruction from a Single Viewport. In: 16th European Conference on Computer Vision, ECCV 2020, 16, Seiten 51-67. Springer, Cham. European Conference on Computer Vision ECCV 2020, 2020-08-23 - 2020-08-28, Virtuell. doi: 10.1007/978-3-030-58542-6_4. ISBN 978-303058541-9. ISSN 0302-9743.
PDF
9MB |
Kurzfassung
We present a novel approach to infer volumetric reconstructions from a single viewport, based only on an RGB image and a reconstructed normal image. To overcome the problem of reconstructing regions in 3D that are occluded in the 2D image, we propose to learn this information from synthetically generated high-resolution data. To do this, we introduce a deep network architecture that is specifically designed for volumetric TSDF data by featuring a specific tree net architecture. Our framework can handle a 3D resolution of 512³ by introducing a dedicated compression technique based on a modified autoencoder. Furthermore, we introduce a novel loss shaping technique for 3D data that guides the learning process towards regions where free and occupied space are close to each other. As we show in experiments on synthetic and realistic benchmark data, this leads to very good reconstruction results, both visually and in terms of quantitative measures.
elib-URL des Eintrags: | https://elib.dlr.de/139323/ | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Konferenzbeitrag (Vortrag) | ||||||||||||
Titel: | 3D Scene Reconstruction from a Single Viewport | ||||||||||||
Autoren: |
| ||||||||||||
Datum: | 23 August 2020 | ||||||||||||
Erschienen in: | 16th European Conference on Computer Vision, ECCV 2020 | ||||||||||||
Referierte Publikation: | Ja | ||||||||||||
Open Access: | Ja | ||||||||||||
Gold Open Access: | Nein | ||||||||||||
In SCOPUS: | Ja | ||||||||||||
In ISI Web of Science: | Nein | ||||||||||||
Band: | 16 | ||||||||||||
DOI: | 10.1007/978-3-030-58542-6_4 | ||||||||||||
Seitenbereich: | Seiten 51-67 | ||||||||||||
Verlag: | Springer, Cham | ||||||||||||
Name der Reihe: | European Conference on Computer Vision | ||||||||||||
ISSN: | 0302-9743 | ||||||||||||
ISBN: | 978-303058541-9 | ||||||||||||
Status: | veröffentlicht | ||||||||||||
Stichwörter: | Scene Reconstruction, 3D from Single Images, Space Compression, Deep Learning, Machine Learning, Neural Networks | ||||||||||||
Veranstaltungstitel: | European Conference on Computer Vision ECCV 2020 | ||||||||||||
Veranstaltungsort: | Virtuell | ||||||||||||
Veranstaltungsart: | internationale Konferenz | ||||||||||||
Veranstaltungsbeginn: | 23 August 2020 | ||||||||||||
Veranstaltungsende: | 28 August 2020 | ||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||
HGF - Programmthema: | Technik für Raumfahrtsysteme | ||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||
DLR - Forschungsgebiet: | R SY - Technik für Raumfahrtsysteme | ||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Vorhaben Multisensorielle Weltmodellierung (alt) | ||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||
Institute & Einrichtungen: | Institut für Robotik und Mechatronik (ab 2013) > Perzeption und Kognition | ||||||||||||
Hinterlegt von: | Denninger, Maximilian | ||||||||||||
Hinterlegt am: | 08 Dez 2020 14:51 | ||||||||||||
Letzte Änderung: | 24 Apr 2024 20:40 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags