Stoiber, Manuel und Pfanne, Martin und Strobl, Klaus und Triebel, Rudolph und Albu-Schäffer, Alin Olimpiu (2020) A Sparse Gaussian Approach to Region-Based 6DoF Object Tracking. In: 15th Asian Conference on Computer Vision, ACCV 2020, 12623, Seiten 666-682. Springer Nature Switzerland. 15th Asian Conference on Computer Vision, ACCV 2020, 2020-11-30 - 2020-12-04, Kyoto, Japan. doi: 10.1007/978-3-030-69532-3_40. ISBN 978-303069531-6. ISSN 0302-9743.
PDF
- Nur DLR-intern zugänglich
2MB | |
PDF
- Nur DLR-intern zugänglich
199kB |
Kurzfassung
We propose a novel, highly efficient sparse approach to region-based 6DoF object tracking that requires only a monocular RGB camera and the 3D object model. The key contribution of our work is a probabilistic model that considers image information sparsely along correspondence lines. For the implementation, we provide a highly efficient discrete scale-space formulation. In addition, we derive a novel mathematical proof that shows that our proposed likelihood function follows a Gaussian distribution. Based on this information, we develop robust approximations for the derivatives of the log-likelihood that are used in a regularized Newton optimization. In multiple experiments, we show that our approach outperforms state-of-the-art region-based methods in terms of tracking success while being about one order of magnitude faster. The source code of our tracker is publicly available.
elib-URL des Eintrags: | https://elib.dlr.de/139320/ | ||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Konferenzbeitrag (Vortrag) | ||||||||||||||||||||||||
Zusätzliche Informationen: | Best paper award. | ||||||||||||||||||||||||
Titel: | A Sparse Gaussian Approach to Region-Based 6DoF Object Tracking | ||||||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||||||
Datum: | Dezember 2020 | ||||||||||||||||||||||||
Erschienen in: | 15th Asian Conference on Computer Vision, ACCV 2020 | ||||||||||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||||||||||
Open Access: | Nein | ||||||||||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||||||||||
In ISI Web of Science: | Nein | ||||||||||||||||||||||||
Band: | 12623 | ||||||||||||||||||||||||
DOI: | 10.1007/978-3-030-69532-3_40 | ||||||||||||||||||||||||
Seitenbereich: | Seiten 666-682 | ||||||||||||||||||||||||
Verlag: | Springer Nature Switzerland | ||||||||||||||||||||||||
Name der Reihe: | Lecture Notes in Computer Science (LNCS) | ||||||||||||||||||||||||
ISSN: | 0302-9743 | ||||||||||||||||||||||||
ISBN: | 978-303069531-6 | ||||||||||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||||||||||
Stichwörter: | 6DoF Object Tracking, Pose estimation, Region-based, Sparse, Gaussian, Real-time, Newton optimization, Probabilistic, Monocular | ||||||||||||||||||||||||
Veranstaltungstitel: | 15th Asian Conference on Computer Vision, ACCV 2020 | ||||||||||||||||||||||||
Veranstaltungsort: | Kyoto, Japan | ||||||||||||||||||||||||
Veranstaltungsart: | internationale Konferenz | ||||||||||||||||||||||||
Veranstaltungsbeginn: | 30 November 2020 | ||||||||||||||||||||||||
Veranstaltungsende: | 4 Dezember 2020 | ||||||||||||||||||||||||
Veranstalter : | Asian Federation of Computer Vision | ||||||||||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||||||||||
HGF - Programmthema: | Technik für Raumfahrtsysteme | ||||||||||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||||||||||
DLR - Forschungsgebiet: | R SY - Technik für Raumfahrtsysteme | ||||||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Vorhaben Multisensorielle Weltmodellierung (alt) | ||||||||||||||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||||||||||||||
Institute & Einrichtungen: | Institut für Robotik und Mechatronik (ab 2013) | ||||||||||||||||||||||||
Hinterlegt von: | Stoiber, Manuel | ||||||||||||||||||||||||
Hinterlegt am: | 08 Dez 2020 14:51 | ||||||||||||||||||||||||
Letzte Änderung: | 24 Apr 2024 20:40 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags