Runge, Jakob (2020) Discovering instantaneous and lagged causal relations in autocorrelated nonlinear time series datasets. UAI 2020, 2020, Online.
PDF
40MB |
Kurzfassung
The paper introduces a novel conditional in- dependence (CI) based method for linear and nonlinear, lagged and contemporaneous causal discovery from observational time series in the causally sufficient case. Existing CI-based methods such as the PC algorithm and also common methods from other frameworks suf- fer from low recall and partially inflated false positives for strong autocorrelation which is an ubiquitous challenge in time series. The novel method, PCMCI + , extends PCMCI [Runge et al., 2019b] to include discovery of contempo- raneous links. PCMCI + improves the relia- bility of CI tests by optimizing the choice of conditioning sets and even benefits from auto- correlation. The method is order-independent and consistent in the oracle case. A broad range of numerical experiments demonstrates that PCMCI + has higher adjacency detec- tion power and especially more contempo- raneous orientation recall compared to other methods while better controlling false posi- tives. Optimized conditioning sets also lead to much shorter runtimes than the PC algorithm. PCMCI + can be of considerable use in many real world application scenarios where often time resolutions are too coarse to resolve time delays and strong autocorrelation is present.
elib-URL des Eintrags: | https://elib.dlr.de/139177/ | ||||||||
---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Konferenzbeitrag (Vortrag) | ||||||||
Titel: | Discovering instantaneous and lagged causal relations in autocorrelated nonlinear time series datasets | ||||||||
Autoren: |
| ||||||||
Datum: | 2020 | ||||||||
Referierte Publikation: | Ja | ||||||||
Open Access: | Ja | ||||||||
Gold Open Access: | Nein | ||||||||
In SCOPUS: | Nein | ||||||||
In ISI Web of Science: | Nein | ||||||||
Status: | veröffentlicht | ||||||||
Stichwörter: | none | ||||||||
Veranstaltungstitel: | UAI 2020 | ||||||||
Veranstaltungsort: | Online | ||||||||
Veranstaltungsart: | internationale Konferenz | ||||||||
Veranstaltungsdatum: | 2020 | ||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||
HGF - Programm: | Raumfahrt | ||||||||
HGF - Programmthema: | keine Zuordnung | ||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||
DLR - Forschungsgebiet: | R - keine Zuordnung | ||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - keine Zuordnung | ||||||||
Standort: | Jena | ||||||||
Institute & Einrichtungen: | Institut für Datenwissenschaften | ||||||||
Hinterlegt von: | Käding, Christoph | ||||||||
Hinterlegt am: | 04 Dez 2020 12:48 | ||||||||
Letzte Änderung: | 15 Okt 2024 08:38 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags