elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Imprint | Privacy Policy | Contact | Deutsch
Fontsize: [-] Text [+]

Regular Strength and Sprint Training Counteracts Bone Aging: a 10- year Follow-up in Male Masters Athletes

Suominen, Tuuli and Alén, Markku and Heinonen, Ari and Degens, Hans and Rittweger, Jörn and Törmäkangas, Timo and Suominen, Harri and Korhonen, Marko (2020) Regular Strength and Sprint Training Counteracts Bone Aging: a 10- year Follow-up in Male Masters Athletes. In: JOURNAL OF BONE AND MINERAL RESEARCH, 35 (S1), pp. 155-156. Journal of Bone and Mineral Research. 2020 Annual Meeting of the American Society for Bone and Mineral Research, 2020-09-11 - 2020-09-15, Virtual Event. doi: 10.1002/jbmr.4206.

[img] PDF - Published version
82MB

Official URL: https://asbmr.onlinelibrary.wiley.com/doi/10.1002/jbmr.4206

Abstract

According to cross-sectional and interventional studies, high-intensity strength and impact-type training provide a powerful osteogenic stimulus even in old age. Longitudinal evidence on the ability of high-intensity training to attenuate age-related bone deterioration is currently lacking, however. This follow-up study assessed the role of continued strength and sprint training on bone aging in 40- to 85-year-old male sprinters (n=69) with long-term training background. pQCT-derived bone structural, strength and densitometric parameters of the distal tibia (5% distal-proximal tibia length) and tibial midshaft (50% length) were assessed at baseline and after 10 years. The groups of well-trained (actively competing, sprint training including strength training >=2 times/wk; n=36) and less-trained (<2 times/wk, no strength training, switched to endurance training; n=33) athletes were defined based on the self-reports at follow-up. The association of continued strength and sprint training with longitudinal changes in bone traits was assessed using an interaction term (group*time) in linear mixed models. Over the 10-year period, the mid-tibia showed a significant group*time interaction in cortical cross-sectional area, cortical thickness, total BMC, and BMC at the anterior and the posterior sites (polar mass distribution analysis) (p<0.05, raw values). At distal tibia, there was a significant interaction in total BMC, trabecular vBMD and compressive strength index (p<0.05, raw values). After adjustment for multiple comparisons, mid-tibia posterior BMC and distal tibia trabecular vBMD remained significant (p<0.05). Overall, the mean differences in changes in the bone traits in well-trained compared to less-trained ranged from 2 to 6%. These were reflected as improved (mid-tibia) or maintained (distal tibia) bone properties in well-trained and decreased in less-trained athletes over the 10-year period. The structural improvements at mid-tibia tended to be more pronounced among older (65-85-yr) well-trained, whereas the densitometric properties were best preserved among younger (40-64-yr) well-trained. In conclusion, our longitudinal findings indicate that con156 P-346 ASBMR 2020 Annual Meeting tinued strength and sprint training is associated with maintained or even improved tibial properties in middle-aged and older male sprint athletes, suggesting that regular, intensive exercise counteracts bone aging

Item URL in elib:https://elib.dlr.de/139151/
Document Type:Conference or Workshop Item (Keynote)
Title:Regular Strength and Sprint Training Counteracts Bone Aging: a 10- year Follow-up in Male Masters Athletes
Authors:
AuthorsInstitution or Email of AuthorsAuthor's ORCID iDORCID Put Code
Suominen, TuuliGerontology Research Center, Faculty of Sport and Health Sciences, University of Jyväskylä, FinlandUNSPECIFIEDUNSPECIFIED
Alén, MarkkuDepartment of Medical Rehabilitation, Oulu University Hospital and Center for Life Course Health Research, University of Oulu, FinlandUNSPECIFIEDUNSPECIFIED
Heinonen, AriUniversity of JyväskyäUNSPECIFIEDUNSPECIFIED
Degens, HansManchester Metropolitan UniversityUNSPECIFIEDUNSPECIFIED
Rittweger, JörnUNSPECIFIEDhttps://orcid.org/0000-0002-2223-8963UNSPECIFIED
Törmäkangas, TimoGerontology Research Center, Faculty of Sport and Health Sciences, University of Jyväskylä, FinlandUNSPECIFIEDUNSPECIFIED
Suominen, HarriUniversity of JyväskyäUNSPECIFIEDUNSPECIFIED
Korhonen, MarkoUniversity of JyväskyäUNSPECIFIEDUNSPECIFIED
Date:2020
Journal or Publication Title:JOURNAL OF BONE AND MINERAL RESEARCH
Refereed publication:Yes
Open Access:Yes
Gold Open Access:No
In SCOPUS:No
In ISI Web of Science:Yes
Volume:35
DOI:10.1002/jbmr.4206
Page Range:pp. 155-156
Publisher:Journal of Bone and Mineral Research
Status:Published
Keywords:Regular Strength, Male Masters Athletes, Bone Aging
Event Title:2020 Annual Meeting of the American Society for Bone and Mineral Research
Event Location:Virtual Event
Event Type:international Conference
Event Start Date:11 September 2020
Event End Date:15 September 2020
HGF - Research field:Aeronautics, Space and Transport
HGF - Program:Space
HGF - Program Themes:Research under Space Conditions
DLR - Research area:Raumfahrt
DLR - Program:R FR - Research under Space Conditions
DLR - Research theme (Project):R - Vorhaben Systemphysiologie (old)
Location: Köln-Porz
Institutes and Institutions:Institute of Aerospace Medicine > Muscle and Bone Metabolism
Deposited By: Arndt, Carina
Deposited On:06 Jan 2021 13:53
Last Modified:24 Apr 2024 20:40

Repository Staff Only: item control page

Browse
Search
Help & Contact
Information
electronic library is running on EPrints 3.3.12
Website and database design: Copyright © German Aerospace Center (DLR). All rights reserved.