Reimers, Christian und Runge, Jakob und Denzler, Joachim (2020) Determining the Relevance of Features for Deep Neural Networks. In: European Conference on Computer Vision (ECCV). European Conference on Computer Vision, 2020-08-23 - 2020-08-28, Online. doi: 10.1007/978-3-030-58574-7_20.
Dieses Archiv kann nicht den Volltext zur Verfügung stellen.
Kurzfassung
Deep neural networks are tremendously successful in many applications, but end-to-end trained networks often result in hard to un- derstand black-box classifiers or predictors. In this work, we present a novel method to identify whether a specific feature is relevant to a clas- sifiers decision or not. This relevance is determined at the level of the learned mapping, instead of for a single example. The approach does neither need retraining of the network nor information on intermedi- ate results or gradients. The key idea of our approach builds upon con- cepts from causal inference. We interpret machine learning in a struc- tural causal model and use Reichenbachs common cause principle to infer whether a feature is relevant. We demonstrate empirically that the method is able to successfully evaluate the relevance of given features on three real-life data sets, namely MS COCO, CUB200 and HAM10000.
elib-URL des Eintrags: | https://elib.dlr.de/139110/ | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Konferenzbeitrag (Poster) | ||||||||||||||||
Titel: | Determining the Relevance of Features for Deep Neural Networks | ||||||||||||||||
Autoren: |
| ||||||||||||||||
Datum: | 2020 | ||||||||||||||||
Erschienen in: | European Conference on Computer Vision (ECCV) | ||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||
Open Access: | Nein | ||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||
In SCOPUS: | Nein | ||||||||||||||||
In ISI Web of Science: | Nein | ||||||||||||||||
DOI: | 10.1007/978-3-030-58574-7_20 | ||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||
Stichwörter: | Explainable-AI, Structural Causal Model, Deep learning, Causality | ||||||||||||||||
Veranstaltungstitel: | European Conference on Computer Vision | ||||||||||||||||
Veranstaltungsort: | Online | ||||||||||||||||
Veranstaltungsart: | internationale Konferenz | ||||||||||||||||
Veranstaltungsbeginn: | 23 August 2020 | ||||||||||||||||
Veranstaltungsende: | 28 August 2020 | ||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||
HGF - Programmthema: | keine Zuordnung | ||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||
DLR - Forschungsgebiet: | R - keine Zuordnung | ||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - keine Zuordnung | ||||||||||||||||
Standort: | Jena | ||||||||||||||||
Institute & Einrichtungen: | Institut für Datenwissenschaften | ||||||||||||||||
Hinterlegt von: | Käding, Christoph | ||||||||||||||||
Hinterlegt am: | 04 Dez 2020 12:34 | ||||||||||||||||
Letzte Änderung: | 04 Jun 2024 12:53 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags