Reimers, Christian und Runge, Jakob und Denzler, Joachim (2020) Determining the Relevance of Features for Deep Neural Networks. In: 16th European Conference on Computer Vision, ECCV 2020. European Conference on Computer Vision, 2020-08-23 - 2020-08-28, Online. doi: 10.1007/978-3-030-58574-7_20. ISBN 978-303058541-9. ISSN 0302-9743.
Dieses Archiv kann nicht den Volltext zur Verfügung stellen.
Kurzfassung
Deep neural networks are tremendously successful in many applications, but end-to-end trained networks often result in hard to un- derstand black-box classifiers or predictors. In this work, we present a novel method to identify whether a specific feature is relevant to a clas- sifiers decision or not. This relevance is determined at the level of the learned mapping, instead of for a single example. The approach does neither need retraining of the network nor information on intermedi- ate results or gradients. The key idea of our approach builds upon con- cepts from causal inference. We interpret machine learning in a struc- tural causal model and use Reichenbachs common cause principle to infer whether a feature is relevant. We demonstrate empirically that the method is able to successfully evaluate the relevance of given features on three real-life data sets, namely MS COCO, CUB200 and HAM10000.
| elib-URL des Eintrags: | https://elib.dlr.de/139110/ | ||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Dokumentart: | Konferenzbeitrag (Poster) | ||||||||||||||||
| Titel: | Determining the Relevance of Features for Deep Neural Networks | ||||||||||||||||
| Autoren: |
| ||||||||||||||||
| Datum: | 2020 | ||||||||||||||||
| Erschienen in: | 16th European Conference on Computer Vision, ECCV 2020 | ||||||||||||||||
| Referierte Publikation: | Ja | ||||||||||||||||
| Open Access: | Nein | ||||||||||||||||
| Gold Open Access: | Nein | ||||||||||||||||
| In SCOPUS: | Ja | ||||||||||||||||
| In ISI Web of Science: | Nein | ||||||||||||||||
| DOI: | 10.1007/978-3-030-58574-7_20 | ||||||||||||||||
| ISSN: | 0302-9743 | ||||||||||||||||
| ISBN: | 978-303058541-9 | ||||||||||||||||
| Status: | veröffentlicht | ||||||||||||||||
| Stichwörter: | Explainable-AI, Structural Causal Model, Deep learning, Causality | ||||||||||||||||
| Veranstaltungstitel: | European Conference on Computer Vision | ||||||||||||||||
| Veranstaltungsort: | Online | ||||||||||||||||
| Veranstaltungsart: | internationale Konferenz | ||||||||||||||||
| Veranstaltungsbeginn: | 23 August 2020 | ||||||||||||||||
| Veranstaltungsende: | 28 August 2020 | ||||||||||||||||
| HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||
| HGF - Programm: | Raumfahrt | ||||||||||||||||
| HGF - Programmthema: | keine Zuordnung | ||||||||||||||||
| DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||
| DLR - Forschungsgebiet: | R - keine Zuordnung | ||||||||||||||||
| DLR - Teilgebiet (Projekt, Vorhaben): | R - keine Zuordnung | ||||||||||||||||
| Standort: | Jena | ||||||||||||||||
| Institute & Einrichtungen: | Institut für Datenwissenschaften | ||||||||||||||||
| Hinterlegt von: | Käding, Christoph | ||||||||||||||||
| Hinterlegt am: | 04 Dez 2020 12:34 | ||||||||||||||||
| Letzte Änderung: | 08 Aug 2025 10:28 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags