Pastor, Francisco und García-Gonzalez, Jorge und Gandarias, Juan M. und Medina, Daniel und Closas, Pau und García-Cerezo, Alfonso und Gómez-de-Gabriel, Jesús (2021) Bayesian and Neural Inference on LSTM-Based Object Recognition From Tactile and Kinesthetic Information. IEEE Robotics and Automation Letters, 6 (1), Seiten 231-238. IEEE - Institute of Electrical and Electronics Engineers. doi: 10.1109/LRA.2020.3038377. ISSN 2377-3766.
PDF
- Postprintversion (akzeptierte Manuskriptversion)
1MB |
Offizielle URL: https://ieeexplore.ieee.org/document/9261100
Kurzfassung
Recent advances in the field of intelligent robotic manipulation pursue providing robotic hands with touch sensitivity. Haptic perception encompasses the sensing modalities encountered in the sense of touch (e.g., tactile and kinesthetic sensations). This letter focuses on multimodal object recognition and proposes analytical and data-driven methodologies to fuse tactileand kinesthetic-based classification results. The procedure is as follows: a three-finger actuated gripper with an integrated high resolution tactile sensor performs squeeze-and-release Exploratory Procedures (EPs). The tactile images and kinesthetic information acquired using angular sensors on the finger joints constitute the time-series datasets of interest. Each temporal dataset is fed to a Long Short-term Memory (LSTM) Neural Network, which is trained to classify in-hand objects. The LSTMs provide an estimation of the posterior probability of each object given the corresponding measurements, which after fusion allows to estimate the object through Bayesian and Neural inference approaches. An experiment with 36-classes is carried out to evaluate and compare the performance of the fused, tactile, and kinesthetic perception systems. The results show that the Bayesian-based classifiers improves capabilities for object recognition and outperforms the Neural-based approach.
elib-URL des Eintrags: | https://elib.dlr.de/139101/ | ||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Zeitschriftenbeitrag | ||||||||||||||||||||||||||||||||
Titel: | Bayesian and Neural Inference on LSTM-Based Object Recognition From Tactile and Kinesthetic Information | ||||||||||||||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||||||||||||||
Datum: | Januar 2021 | ||||||||||||||||||||||||||||||||
Erschienen in: | IEEE Robotics and Automation Letters | ||||||||||||||||||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||||||||||||||||||
Open Access: | Ja | ||||||||||||||||||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||||||||||||||||||
In ISI Web of Science: | Ja | ||||||||||||||||||||||||||||||||
Band: | 6 | ||||||||||||||||||||||||||||||||
DOI: | 10.1109/LRA.2020.3038377 | ||||||||||||||||||||||||||||||||
Seitenbereich: | Seiten 231-238 | ||||||||||||||||||||||||||||||||
Verlag: | IEEE - Institute of Electrical and Electronics Engineers | ||||||||||||||||||||||||||||||||
ISSN: | 2377-3766 | ||||||||||||||||||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||||||||||||||||||
Stichwörter: | Deep learning in grasping and manipulation; force and tactile sensing; sensor fusion; | ||||||||||||||||||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||||||||||||||||||
HGF - Programmthema: | Kommunikation und Navigation | ||||||||||||||||||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||||||||||||||||||
DLR - Forschungsgebiet: | R KN - Kommunikation und Navigation | ||||||||||||||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Projekt Navigation 4.0 (alt) | ||||||||||||||||||||||||||||||||
Standort: | Neustrelitz | ||||||||||||||||||||||||||||||||
Institute & Einrichtungen: | Institut für Kommunikation und Navigation > Nautische Systeme | ||||||||||||||||||||||||||||||||
Hinterlegt von: | Medina, Daniel | ||||||||||||||||||||||||||||||||
Hinterlegt am: | 04 Dez 2020 15:41 | ||||||||||||||||||||||||||||||||
Letzte Änderung: | 04 Dez 2020 15:41 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags