Hirner, Dominik und Fraundorfer, Friedrich (2021) FC-DCNN: A densely connected neural network for stereo estimation. In: 25th International Conference on Pattern Recognition, ICPR 2020, Seiten 2482-2489. ICPR 2020, 2021-01-10 - 2021-01-15, Milan, Italy. doi: 10.1109/ICPR48806.2021.9413281. ISBN 978-1-7281-8808-9. ISSN 1051-4651.
PDF
9MB |
Offizielle URL: https://ieeexplore.ieee.org/document/9413281
Kurzfassung
We propose a novel lightweight network for stereo estimation. Our network consists of a fully-convolutional densely connected neural network (FC-DCNN) that computes matching costs between rectified image pairs. Our FC-DCNN method learns expressive features and performs some simple but effective postprocessing steps. The densely connected layer structure connects the output of each layer to the input of each subsequent layer. This network structure and the fact that we do not use any fullyconnected layers or 3D convolutions leads to a very lightweight network. The output of this network is used in order to calculate matching costs and create a cost-volume. Instead of using time and memory-inefficient cost-aggregation methods such as semiglobal matching or conditional random fields in order to improve the result, we rely on filtering techniques, namely median filter and guided filter. By computing a left-right consistency check we get rid of inconsistent values. Afterwards we use a watershed foreground-background segmentation on the disparity image with removed inconsistencies. This mask is then used to refine the final prediction. We show that our method works well for both challenging indoor and outdoor scenes by evaluating it on the Middlebury, KITTI and ETH3D benchmarks respectively. Our full framework is available at https://github.com/thedodo/FCDCNN
elib-URL des Eintrags: | https://elib.dlr.de/138907/ | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Konferenzbeitrag (Poster) | ||||||||||||
Titel: | FC-DCNN: A densely connected neural network for stereo estimation | ||||||||||||
Autoren: |
| ||||||||||||
Datum: | Januar 2021 | ||||||||||||
Erschienen in: | 25th International Conference on Pattern Recognition, ICPR 2020 | ||||||||||||
Referierte Publikation: | Ja | ||||||||||||
Open Access: | Ja | ||||||||||||
Gold Open Access: | Nein | ||||||||||||
In SCOPUS: | Ja | ||||||||||||
In ISI Web of Science: | Ja | ||||||||||||
DOI: | 10.1109/ICPR48806.2021.9413281 | ||||||||||||
Seitenbereich: | Seiten 2482-2489 | ||||||||||||
ISSN: | 1051-4651 | ||||||||||||
ISBN: | 978-1-7281-8808-9 | ||||||||||||
Status: | veröffentlicht | ||||||||||||
Stichwörter: | 3D vision; Deep learning; Neural networks | ||||||||||||
Veranstaltungstitel: | ICPR 2020 | ||||||||||||
Veranstaltungsort: | Milan, Italy | ||||||||||||
Veranstaltungsart: | internationale Konferenz | ||||||||||||
Veranstaltungsbeginn: | 10 Januar 2021 | ||||||||||||
Veranstaltungsende: | 15 Januar 2021 | ||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||
HGF - Programm: | Verkehr | ||||||||||||
HGF - Programmthema: | Straßenverkehr | ||||||||||||
DLR - Schwerpunkt: | Verkehr | ||||||||||||
DLR - Forschungsgebiet: | V ST Straßenverkehr | ||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | V - NGC KoFiF (alt) | ||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||
Institute & Einrichtungen: | Institut für Methodik der Fernerkundung > Photogrammetrie und Bildanalyse | ||||||||||||
Hinterlegt von: | Knickl, Sabine | ||||||||||||
Hinterlegt am: | 01 Dez 2020 15:56 | ||||||||||||
Letzte Änderung: | 24 Apr 2024 20:40 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags