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Abstract—We propose a novel lightweight network for stereo
estimation. Our network consists of a fully-convolutional densely
connected neural network (FC-DCNN) that computes matching
costs between rectified image pairs. Our FC-DCNN method learns
expressive features and performs some simple but effective post-
processing steps. The densely connected layer structure connects
the output of each layer to the input of each subsequent layer.
This network structure and the fact that we do not use any fully-
connected layers or 3D convolutions leads to a very lightweight
network. The output of this network is used in order to calculate
matching costs and create a cost-volume. Instead of using time
and memory-inefficient cost-aggregation methods such as semi-
global matching or conditional random fields in order to improve
the result, we rely on filtering techniques, namely median filter
and guided filter. By computing a left-right consistency check
we get rid of inconsistent values. Afterwards we use a watershed
foreground-background segmentation on the disparity image with
removed inconsistencies. This mask is then used to refine the
final prediction. We show that our method works well for both
challenging indoor and outdoor scenes by evaluating it on the
Middlebury, KITTI and ETH3D benchmarks respectively. Our
full framework is available at https://github.com/thedodo/FC-
DCNN

I. INTRODUCTION

Retrieving 3D information from image pairs is a major topic
in computer vision and has become even more popular in
recent years because of the advances in autonomous driving,
robotics and remote sensing.

A typical stereo method consists of the following four
steps: feature extraction, matching cost calculation, disparity
estimation and disparity refinement. In the past, handcrafted
feature extraction methods like Census [1] or dense gradient
features [2] were used. In recent years however, many ap-
plications have shown that deep learning methods are advan-
tageous [3][4][5][6][7][8] and can improve matching results
in many real world challenges by learning. Such challenges
for example include textureless areas like floors, walls or the
sky, specular reflections on smooth surfaces or thin structures
and clutter. By learning more expressive features for such
challenging areas using deep learning techniques, the number
of correct matches found can be improved.

We follow the work of Zbontar and LeCun [3] by creating
a shared-weights siamese network structure for feature extrac-
tion. However instead of using one connection between sub-
sequent layers, we use a densely-connected network structure.

Fig. 1. FC-DCNN network structure. The left and the right image are
processed at the same time by individual branches with shared weights. Each
branch consists of 5 convolutional layers (Conv1-Conv5) with k = 3x3
kernels and m = 64 feature maps. After the last layer a cost volume is
created using the cosine similarity. The final prediction is the winner-takes-all
estimate along the third dimension of the cost-volume.

As described by G. Huang et al. [9], this structure helps to
alleviate the vanishing-gradient problem due to better feature
reuse and better feature propagation. This allows us to reduce
the number of trainable parameters in comparison to traditional
feed-forward CNN networks. Our whole network structure is
illustrated in Fig. 1. The arrows in color depict the additional
connections of the dense network structure between layers.

Matching costs are based on the similarity measurements
between the extracted features of the image pairs. Over the
years many different similarity measurements have been stud-
ied and proposed, such as the sum of absolute difference/sum
of squared difference (SAD/SSD) [10], normalized cross cor-
relation (NCC) [11] or Mutual Information (MI) [12]. Previous
works have integrated the learning of a matching cost function
within their network architecture. The advantage of this is that
the whole matching pipeline is fully automated and trainable,
however we decided against it in our implementation as the
corresponding parts of the network would highly increase
the complexity while only improving slightly over traditional
matching costs like normalized cross correlation [11] or cosine
similarity (in our experiments only about 1-2%).

Once all the matches are calculated, the most likely candi-
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date for each position is chosen. Even with better and more ex-
pressive learned features, the resulting disparity map can often
still be subject to strong outliers and noise. This is why a post-
processing or regularization step of the cost-volume is impor-
tant. Traditional methods use regularization techniques such
as semi-global matching (SGM) [13] or more-global matching
(MGM) [14]. However these regularization techniques, while
still being competitive in regards to accuracy, are relatively
slow and memory-inefficient because most implementations
are not optimized for GPU usage. Therefore we use a pytorch
implementation of the median filter [15] and guided filter [16]
on each slice of the cost volume before taking the maximum
for the final prediction instead. Afterwards we rely on a left-
right consistency check to identify inconsistent points and use
a watershed foreground-background segmentation in order to
decide how to update these values. The input, all intermediate
results and the final disparity estimation can be seen in Fig. 2.
In summary our contributions are as follows:

• We propose a novel fully-convolutional densely con-
nected siamese network structure for feature extraction.
We use dense-layer connections and do not use any fully-
connected layers or 3D convolutions. Therefore we are
able to produce a lightweight network structure.

• We train and evaluate our network on three challenging
datasets, namely Middlebury, KITTI and ETH3D. We dis-
cuss the results both qualitatively as well as quantitatively.
We show that our method can compete with state-of-the-
art methods.

• We implement our own post-processing based on filter-
ing, finding inconsistencies via a left-right check and
updating found inconsistent values by using a watershed
algorithm on the disparity map with removed inconsisten-
cies. This allows us to be independent from out-of-the box
regularization techniques which might not be optimized
for GPU usage.

Our method can be seen as a hybrid method, which is
faster and more accurate as traditional non-learning methods
such as SGM [13] while needing less GPU-Ressources than
fully end-to-end methods such as PSMNet [17] while still
producing comparable accuracies and being well suited for
typical applications.

II. RELATED WORK

Our work is based on previous work on feature extraction
using CNNs, similarity measurements and disparity refine-
ment.

Feature extraction is an important step for any stereo
method. While there are many still used handcrafted feature
extractors such as Census [1] or dense gradient features [2],
many new approaches use CNNs in order to learn more ex-
pressive and robust features. A popular model for this task is a
siamese CNN structure with shared weights [3][4][5][6][7][8].
This network structure was popularized by the work of Zbontar
and LeCun [3] for the task of disparity estimation. In their
work they extract small image patches from the left image
and corresponding correct and wrong patches from the right

image. They then formulate the training of the feature extractor
as a binary classification where they want to maximize the
distance in similarity between the correct and not correct pair
of patches.

Similarity measurements are widely used in machine
learning and are often a vital part of the loss function and
training. In stereo vision similarity measurements are addi-
tionally used as the matching cost function in order to find
corresponding points between the image pair. Many of the
commonly used cost functions are window-based, as single
pixel values are often not expressive enough to confidently
find the correct match. Such window-based function include
the sum of absolute difference/sum of squared difference
(SAD/SSD) [10], normalized cross correlation (NCC) [11],
Census or Rank [1]. H. Hirschmueller and D. Scharstein
evaluated all previously mentioned matching costs and more
in their paper [18].

Window-based matching costs however can be time- and
ressource-inefficient if naively implemented due to the slid-
ing window problem (though some improvements have been
suggested [19][20]). We argue that due to the nature of deep-
CNNs, each image point has already implicit knowledge of
its immediate neighbourhood encoded in its multi-dimensional
feature vector. We therefore use the pixel-wise cosine similar-
ity as our cost function.

Many stereo networks do not use handcrafted cost functions
but rather learn it together with the feature extractor as part of
the network [3][4], however most use fully-connected layers
(or 1x1 convolution layers) in order to accomplish this and
therefore increase their model complexity manifold. While we
do not deny that there are advantages of a fully end-to-end
trainable model, we decided against learning a cost function
in order to keep our network smaller.

Disparity refinement is done in order to create the final
disparity prediction. In this step the often still noisy and
outlier/peak-prone output is taken and optimized. One of the
most-popular methods for disparity refinement is semi-global
matching (SGM) [13]. In the original paper, Hirschmueller
uses Mutual Information [12] for the matching cost, this
however can be substituted for any matching cost. SGM
aggregates the matching costs from all 16 cardinal direction
for each pixel, by approximating 2D smoothness constraint by
combining many 1D line optimization problems.

G. Facciolo et al. [14] improve upon this method by using
different elements and using more than one cardinal direction
for the belief update of one disparity value. He also discusses
the artefacts that can be produced by the update scheme of
SGM and its variants.

F. Tosi et al. [21] use a confidence map in order to
detect reliable and unreliable points in a disparity map. After
removing the unreliable points from the map, they then update
these unreliable points by aggregating the first reliable points
along different paths that they call ”anchor”. They weigh each
anchor according to a Gaussian similarity function and finally
take a weighted median to update the unreliable point.

S. Gidaris and N. Komodakis [22] use three steps in order to



Fig. 2. All intermediate results of our method. From left to right: Input RGB stereo pair, winner-takes-all (WTA) output of the network, WTA output with
removed inconsistencies, final prediction by filling in the previously removed values.

TABLE I
LAYER ABLATION STUDY

layers parameters 2-PE
2-layer 37k 49.08
3-layer 111k 41.23
4-layer 222k 37.32
5-layer 369k 35.90
6-layer 554k 35.15

improve the final disparity prediction. First they detect erro-
neous disparities by taking the initial estimate and performing
a consistency check. Then they replace these inconsistently
labeled pixels with a new label which is produced by a convex
combination of the initial label field. In the end they refine
the disparity map by doing a residual correction in order to
get a ”softer” output with finer structures.

Additionally to cost-aggregation/belief propagation, dis-
parity refinement often includes subpixel refinement [23] a
consistency check [24][25][26] and hole-filling/gap interpola-
tion [27].

Our work differs from prior work on stereo vision in (1)
the network structure for feature extraction and (2) the post-
processing step. Prior work often relies on deep structures with
many trainable weights and out-of-the-box disparity refine-
ments like semi-global matching or conditional random fields.
We address these issues by using a dense network structure
with a three-step disparity refinement procedure.

III. NETWORK

In this section, we describe the network architecture of
our model. We use fully-convolutional siamese branches with
shared weights for our network. This network consists of five
convolutional layers with a kernel size of k = 3x3 and m = 64
feature maps per layer. We took inspiration from DenseNet by
G. Huang et al. [9] by connecting the output of each layer to
each subsequent layer. While this network was originally build
with the task of object-detection in mind, we argue that this
structure is a good fit for disparity estimation as well. The
benefits described in their work, such as strengthened feature
propagation and better feature reuse while alleviating the
vanishing gradient problem leads to a more lightweight feature
extractor. However we adapt the original implementation to fit
our needs. The changes to the original structure are as follows:

• Following Zbontar and LeCun [3] we do not use down-
sampling in our network. Therefore we do not use ”Dense

TABLE II
NUMBER OF TRAINABLE PARAMETER COMPARISON OF POPULAR

NETWORKS

Method Param

FC-DCNN (ours) 0.37M

MC-CNN-ACRT [3] 0.5M

GC-Net [7] 2.9M

PSMNet [6] 3.5M

Blocks” and transition layers as described by G. Huang
et al. [9]. The transition layer is described as having a
1x1 convolution as well as down-sampling and batch-
normalization. All layers in between these transition
layers are called a ”Dense Block”.

• In the original work of G. Huang et al. [9] the structure is
described as being deep and narrow, e.g. having only 12
filters per layer but having many layers. We decided on a
shallower and wider network structure, with 64 filters per
layer. The amount of input connections increases linearly
with 2∗m input weights in the third layer and up to 4∗m
in the output layer.

• The original implementation uses ReLU [28] as their
activation function. Related work [29][30][4] has shown
that using a TanH activation function gives better results
than using ReLUs [28] for feature matching. Therefore
we also use TanH as our activation function.

The total number of parameters for the feature extractor
network is around 370k in 5-layers. To motivate this architec-
ture, we conduct an ablation study by increasing the number
of layers from 2 to 6. We train each network overnight and
report the number of trainable parameter as well as the end-
point error with a threshold of two (2-point error or 2-PE)
on the Middlebury dataset. The results of this study can
be seen in Tab. I. This experiment shows that the network
accuracy improves noticeably by increasing the number of
layers up until 5 layers. After that point adding another layer
seems to affect the overall accuracy less, however the number
of trainable parameters increases drastically. We therefore
decided on a 5-layer network structure as illustrated in Fig. 1.
Tab. II compares the number of parameters of our network
(FC-DCNN) to some other popular methods. This illustrates
that our network is a very lightweight network and therefore
easily extendable, but still produces comparable results on
challenging outdoor and indoor datasets.



A. Post-processing

In order to produce the final result, some post-processing is
necessary. The following steps are done in order to improve
the final disparity estimation: First we filter each dimension of
the cost-volume, then we find and remove inconsistent points.
Last we replace this points with new values. This update
changes depending on if the value is part of the foreground
or background. We argue that post-processing is an important
step of the method. Although it is responsible for most of the
overall runtime, it further decreases the error by almost half.
We motivate this by reporting on the 2-point error and runtime
on the Middlebury training dataset for each post-processing
step. The runtime and accuracy will always be given as all
the previous steps in addition to the step currently described.
Without any post-processing the network achieves a 2-point
error of 33.3% with an average execution time of 3 seconds.

1) Filtering: Median filter is known to work well for
Salt&Pepper noise [31]. This kind of noise is common in flat
or textureless regions in disparity maps, even with learned,
more expressive features. To get rid of some of this noise we
apply a median filter with a 5x5 kernel to each dimension of
the cost-volume consecutively. To this end the differentiable
and time-efficient implementation of the median-filter from the
Kornia library is used [15].

Afterwards each slice of the cost-volume is filtered by a
guided filter with a radius size of r = 8 and a regularization
parameter η = 10 to produce a final smooth output. We
use a fast deep-FCN implementation with pre-trained weights
implemented in pytorch for this task [16]. This decreases the
error on Middlebury from 33.3% to 22.6% with an average
execution time of 12.1 seconds.

2) LR-consistency check: The left-right consistency aims to
get rid of inconsistencies between the disparity map calculated
for the left image and the disparity map calculated for the right
image. These inconsistencies are expected to occur because of
self-occlusions, for instance at the object-boundaries, however
they also occur if the match is predicted wrong.

The check is done by also treating the right image as
reference and searching corresponding image points in the left
image along the opposite search direction.

Let DL be the disparity map obtained by treating the left
image as reference and DR the disparity map obtained from
treating the right image as reference. Let furthermore d be the
value of DL at position (x, y), i.e. d = DL(x, y) Then a value
is marked as inconsistent if:

|DL(x, y)−DR(x− d, y)| > 1.1. (1)

This step doubles the execution time, as all of the steps have
to be done for the left and for the right image individually (plus
the runtime for the consistency check itself). On Middlebury
this increases the runtime from 12.1 seconds to 21.6 seconds.
This step does not improve the accuracy, however it produces
a disparity map with removed inconsistencies.

Fig. 3. From left to right: RGB image of an image detail, disparity map with
inconsistencies removed (black), watershed mask on RGB image, watershed
mask on disparity map (white = foreground, black = background).

3) Update inconsistent points: Once all inconsistent points
in a disparity map have been found, their values should be
updated. We argue that inconsistencies occur because of either:
1) self-occlusion of an object, 2) that the structure is outside
of the field-of-view of the second image, in which case you
cannot find the right prediction with the data alone, or 3)
simply put the prediction was wrong.

We further argue that image points that are part of the
background are most likely flat and because of the epipolar
constraint will therefore have most likely the same depth as
points in the same horizontal line. If we find a pixel marked as
invalid that is part of the background, we search for the first
valid measurement on the same horizontal line that is also part
of the background and copy it. If the end of the horizontal line
is reached, the direction is reversed and a valid background
measurement is searched to the left.

However, the same cannot be said about invalid pixels that
are part of the foreground, as it contains complex structured
objects. If an invalid point is part of the foreground, an
averaging approach is taken. Here we search in all eight
cardinal directions, starting from the invalid point until a valid
point, that is also part of the foreground, is found along
this scanline. Afterwards all eight values are summed up and
averaged for the new disparity value of this point.

In order to get the foreground and background segmentation,
a simple watershed algorithm is used on the disparity with
removed inconsistencies. This is because we want image
points that are outside the field-of-view of the right image
to be treated as background pixels, as averaging would not
make sense in this case. Furthermore, object boundaries of
the disparity image are often not exactly were they are in the
RGB image. An example can be seen in Fig. 3. This small
area was chosen to illustrate that the overlap of the object
boundary between the RGB image and the corresponding
estimated disparity map is not perfect and therefore the mask
obtained from the RGB image (second to last image in Fig. 3)
would wrongly classify disparities as part of the foreground.
Therefore we use the disparity map with deleted inconsistent
points as an input (second image in Fig. 3) to produce the
final mask (last image in Fig. 3). This means however, that
larger holes within foreground structures will be classified
as background. To close such holes in the mask we use a
dilation scheme with a 5x5 filter kernel size for two iterations.
Afterwards we thin the mask again with an erosion scheme for
two iterations with a 5x5 kernel.

On Middlebury this step increases the accuracy from 22.6%



to 17.9% with an average execution time of 27.6 seconds.
Depending on the dataset, this method is 4 to 5 times

faster than MC-CNN-acrt [3] improving the runtime from
106 to 27 seconds on the Middlebury dataset. This time
measurements have been taken directly from the corresponding
official benchmarks.

IV. EXPERIMENTS AND RESULTS

In this section we discuss all the conducted experiments
and their results. It is structured as follows: First we will
discuss how the training task is defined and subsequently
how the training data is prepared for this task. Afterwards we
will discuss the implementation details. Finally we will show
the qualitative and quantitative results of our experiments and
compare them to other methods.

A. Training the feature extractor

Disparity estimation can be viewed as a multi-classification
problem. For each position in the reference image there is
a (previously fixed) number of candidates corresponding to
a possible position in the second image. In the end the
most likely candidate is chosen (winner-takes-all) for the final
prediction. However, instead of directly predicting the final
winner, for instance by calculating the Cross Entropy loss over
all possible classes, a simpler approach is taken in order to
train the feature extracting siamese network.

Following Zbontar and Lecun’s work [3], we instead train
the network as a binary classification task. For each sample a
small grayscale patch is extracted at position p = (x, y) from
the reference image. From the second image, two patches are
extracted, one positive example qpos at the correct position
and one negative example qneg at the wrong position.

B. Preparing the training set

As suggested by Zbontar and LeCun [3] we choose a patch
size of 11x11 for the randomly cropped patches of our training
set. The center position of the left patch p is randomly chosen
over the whole image domain, as long as the corresponding
ground truth gt position is valid.

p = (x, y) (2)

gt(x, y) = valid. (3)

The positive patch qpos is created by using the correct
disparity d of position (x, y)

qpos = (x− d, y). (4)

In the original paper by Zbontar and LeCun [3] a small offset
is added to the position of the positive patch because the post-
processing worked better with it. As we use different post-
processing steps we do not use any random offset for the
positive patch.

For the negative sample a random offset oneg within the
range of either (−6,−2) or (2, 6) is chosen. In our imple-
mentation the probability of either being shifted to the left or
to the right is 50%.

qneg = (x− d+ oneg, y). (5)

The reason why the random offset is limited and not chosen
from all possible positions is because it is expected that points
far away from the true position have a low similarity score
anyway. Points closer to the positive position can be more
ambiguous and should therefore be learned to be more robust.

In the original paper, Zbontar and LeCun [3] describe that
about 20% of their training set for the Middlebury benchmark
consists of samples where the lighting condition or shutter
exposure changed between the image pairs. In our experiments
we found having 10% of training samples with these varia-
tions works better, as it seems that it introduced more noise
otherwise. We do not use any data set augmentation, however
by using the ”perfect” and ”imperfect” rectification with the
variations in lighting and exposure for the Middlebury training
set, we still end up with around 40 million training samples,
although many of them will be similar as we allow a position
to be drawn multiple time.

C. Implementation details

The whole project is implemented using Python3 and py-
torch 1.2.1 [32]. The loss function is implemented as a hinge-
loss:

loss = max(0, 0.2 + s− − s+), (6)

where s− is the similarity score between the left patch p and
the patch from a wrong position of the right image qneg . s+ is
the similarity score between p and the patch from the correct
position qpos. This loss forces the network to train features,
such that the similarity between correct matches should be
higher by at least 0.2.

In our implementation we slightly change the formulation
of this loss by using a ReLU [28] instead of the traditional
hinge loss for ease of implementation. This leads to a sign
change in the loss definition:

loss = ReLU(s+ − s− − 0.2). (7)

The similarity between patches is calculated using the
pytorch implementation of the cosine similarity. It is defined
as:

sim(A,B) =
A ·B
‖A‖‖B‖

, (8)

where A and B are the two vectors to be compared. We us
the Adam Optimizer [33] with a relative small learning rate of
η = 6×10−6 for training. We use a batch-size of 800 samples
per iteration and trained for roughly 2 days on each dataset
using a GeForce RTX 2080.

D. Results

We compare our results to state-of-the-art methods from
three challenging benchmarks. For each benchmark the net-
work was trained for around 2 days. We decided to train
KITTI2012 and KITTI2015 [34] together, however better
results may be achieved by training and testing on each dataset
individually.



TABLE III
ACCURACY COMPARISON ON THE MIDDLEBURY TRAINING DATASET

Method 4-PE 2-PE 1-PE 0.5 PE

FC-DCNN (ours) 12.3 17.9 34.7 65.1

iResNet [40] 11.1 20.3 35.1 58.7

SGM (Q) [13] 12.9 21.0 37.3 64.6

PSMNet [17] 13.1 23.0 40.2 64.9

SGBM1 (H) [36] 17.6 23.3 36.5 57.8

Fig. 4. Qualitative results from the Middlebury test and training dataset. From
left to right: RGB, final disparity map, 2-point error on full resolution (not
available for test data).

1) Middlebury: The Middlebury stereo dataset [35] consists
of challenging indoor scenes with large disparity ranges under
different, controlled exposure and lighting technique. The
dataset is provided in full (F), half (H) and quarter (Q)
resolution. We chose to submit in half resolution due to
hardware constraints. Tab. III shows that our method is already
better than popular stereo methods, such as SGM [13] on
quarter (Q) resolution, as well as SGM [13] on full resolution
(F) (not shown in Tab. III) or OpenCV’s reimplementation of
SGM which they call SGBM [36]. It further shows that we
are on par with well-known deep-learning methods such as
iResNet [40] or PSMNet [17]. On average our method took
about 13 seconds per Megapixel for the Middlebury data.

Fig. 4 shows qualitative results of our method of three
different scenes from the Middlebury dataset. It illustrates
that our method performs well even in cases of clutter, like
the leaves of the ”Jadeplant” sample (second example), or in
homogeneous areas. An example for a homogenous area is the
background area of the samples, here shown as blue colors in
the disparity map. The last column consists of the 2-point error
map obtained from the official submission page. Here darker
colors correlate to a higher error.

2) KITTI: The KITTI stereo dataset [34] consists of out-
door street images used for autonomous driving. The ground
truth was taken by a laser scanner which leads to a rather
sparse ground-truth disparity. We use the same number of
disparities for all pairs, namely 192 for KITTI2012 and 228

for KITTI2015.

TABLE IV
ACCURACY COMPARISON ON THE KITTI 2012 TESTING DATASET

Method 5-PE 4-PE 3-PE 2-PE

FC-DCNN (ours) 3.71 4.40 5.61 8.81
OASM-Net [39] 4.32 5.11 6.39 9.01

SGBM [36] 5.03 6.03 7.64 10.60

ADSM [41] 6.20 7.09 8.71 13.13

GF (Census) [38] 8.49 9.57 11.65 16.75

TABLE V
ACCURACY COMPARISON ON THE KITTI 2015 TESTING STEREO DATASET

Method 3-PE

FC-DCNN (ours) 7.71
MeshStereo [42] 8.38

OASM-Net [39] 8.98

OCV-SGBM [44] 10.86

SGM&FlowFie+ [45] 13.37

Tab. IV compares our results on the KITTI 2012 test dataset
with other methods. Tab. V compares our results on the
KITTI 2015 test dataset [34] with other methods. Without
any bells and whistles our method is better than well-known
methods such as OpenCVs [36] implementation of SGM
called SGBM or an implementation of Census features with
guided filtering [38] while being on par with other state-of-
the-art deep learning methods such as OASM-Net [39]. We
believe that doing further evaluations on the post-processing
parameters would improve the results. On average the whole
method takes about 7 seconds per image pair for the KITTI
dataset [34].

Fig. 5 shows the final disparity prediction plus all interme-
diate outputs of four chosen examples from the KITTI 2015
set [34]. It shows that while further hyperparameter studies
might improve the accuracy, our method yields good results.

3) ETH3D: The ETH3D [37] dataset for two-view stereo
estimation consists of 27 training and 20 test pairs. The scenes
of these pairs vary from tunnels to playgrounds and forest
areas. In contrast to the other benchmarks however, the image-
pairs have a small baseline and fine structures, which leads
to a low number of disparities (maximum disparity in the
training set is 64) with more steps in-between each discrete
disparity step. We predict discrete-valued disparity steps, and
also prepare our training patches as such. This would suggest,
that our method is not well suited for this benchmark, however
we show that we get decent results even with the previously
stated limitations.

Tab. VI compares our method with other methods from
the online leaderboard. The LSM methods is an anonymous
submissions, therefore we cannot credit them. One can see
that while there is still room for improvement, especially
in the lower threshold end-point errors, our method already
performs decently without any need of modification with only



Fig. 5. Qualitative results from the KITTI train dataset (left column) and test
dataset (right column). From top to bottom in both columns: left RGB image,
initial disparity estimation, disparity with inconsistent points removed, final
disparity map.

TABLE VI
ACCURACY COMPARISON ON THE ETH3D TEST DATASET

Method 4-PE 2-PE 1-PE 0.5 PE

FC-DCNN (ours) 3.38 5.77 10.41 24.12

MeshStereo [42] 2.61 5.78 11.52 22.27
LSM 4.58 7.38 14.01 29.98

ELAS RVC [43] 2.84 7.69 16.54 33.79

around 6% 2-point error. On average our method took about
1.6 seconds for one image pair to produce the final output.

Fig. 6 shows some qualitative results of the ETH3D [37]
test and training set. It shows that while some details within
the subpixel range might be missing, the overall structure is
predicted very well.

V. GENERALIZATION EXPERIMENTS

In order to show that the network is not overfitted on a single
dataset, we perform a simple generalization test, where the
weight trained on one dataset is used in order to do inference
on the other two datasets. The 2-point error is reported.
Missing or invalid ground-truth measurements are not taken
into account in this evaluation. This changes the metric for
the KITTI2012 [34] benchmark where the official benchmark
interpolates the missing ground-truth measurements.

Tab. VII shows that while the best performance is achieved
by training on the corresponding dataset, the network perfor-
mance stays stable even when trained on completely different

Fig. 6. Qualitative results from the ETH3D train and test dataset. The left
column shows the first image of the stereo pair, the right column the final
disparity map.

TABLE VII
GENERALIZATION TEST

Middlebury [35] Kitti2012 [34] ETH3D [37]
(trained) (trained) (trained)

Middlebury [35] 17.9 19.6 20.4
Kitti2012 [34] 20.30 16.66 19.70
ETH3D [37] 7.65 6.78 5.77

scenes. This shows that our method generalizes well and is
usable for many different applications. However, the conducted
experiments suggest that the KITTI2012 [34] benchmark prof-
its the most from training, as the achieved accuracies varied
the most of all tested datasets.

VI. CONCLUSION AND FUTURE WORK

We have shown that a dense-network structure can be advan-
tageous for the stereo vision task. By using this structure and
by not using any fully-connected layers or 3D convolutions we
were able to produce a very lightweight network that still has
comparable results on difficult outdoor and indoor datasets.

Instead of relying on out-of-the-box post-processing solu-
tions that are often not optimized for GPU usage such as semi-
global matching or conditional random fields we use our own
three-steps post processing. First we filter the cost-volume,
then we detect inconsistencies that we afterwards update by
using a foreground-background segmentation.

In the future we want to conduct an exhaustive network ar-
chitecture study. To this end the number of layers experiments
should be extended to also include number of feature maps.
This may lead to an even better network structure.

The foreground-background segmentation may be improved
upon by using more advanced techniques. For all of our



experiments we hold the parameters for the segmentation
of the disparity map static which will not lead to optimal
solutions for each individual scene. This might be improved
upon in the future by having an adaptive method or by using
machine learning.

The runtime of our updating scheme for inconsistent points
can be improved, especially when large portions of the im-
age are inconsistent. This frequently happened in the KITTI
benchmark, as often large portions of the image are sky,
which cannot be correctly matched and therefore are marked
as inconsistent.

In the future it might proof to be beneficial to learn the
weights of the guided filter, instead of using pre-trained
weights.
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