elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

High-recall causal discovery for autocorrelated time series with latent confounders

Gerhardus, Andreas und Runge, Jakob (2020) High-recall causal discovery for autocorrelated time series with latent confounders. In: 34th Conference on Neural Information Processing Systems, NeurIPS 2020. Thirty-fourth Conference on Neural Information Processing Systems (NeurIPS 2020), 2020-12-06 - 2020-12-12, Online. ISSN 1049-5258.

[img] PDF
3MB
[img] PDF
13MB

Offizielle URL: https://papers.nips.cc/paper/2020/hash/94e70705efae423efda1088614128d0b-Abstract.html

Kurzfassung

We present a new method for linear and nonlinear, lagged and contemporaneous constraint-based causal discovery from observational time series in the presence of latent confounders. We show that existing causal discovery methods such as FCI and variants suffer from low recall in the autocorrelated time series case and identify low effect size of conditional independence tests as the main reason. Information-theoretical arguments show that effect size can often be increased if causal parents are included in the conditioning sets. To identify parents early on, we suggest an iterative procedure that utilizes novel orientation rules to determine ancestral relationships already during the edge removal phase. We prove that the method is order-independent, and sound and complete in the oracle case. Extensive simulation studies for different numbers of variables, time lags, sample sizes, and further cases demonstrate that our method indeed achieves much higher recall than existing methods for the case of autocorrelated continuous variables while keeping false positives at the desired level. This performance gain grows with stronger autocorrelation. At github.com/jakobrunge/tigramite we provide Python code for all methods involved in the simulation studies.

elib-URL des Eintrags:https://elib.dlr.de/138893/
Dokumentart:Konferenzbeitrag (Vortrag, Poster)
Titel:High-recall causal discovery for autocorrelated time series with latent confounders
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Gerhardus, AndreasAndreas.Gerhardus (at) dlr.dehttps://orcid.org/0000-0003-1868-655XNICHT SPEZIFIZIERT
Runge, JakobJakob.Runge (at) dlr.dehttps://orcid.org/0000-0002-0629-1772NICHT SPEZIFIZIERT
Datum:Dezember 2020
Erschienen in:34th Conference on Neural Information Processing Systems, NeurIPS 2020
Referierte Publikation:Ja
Open Access:Ja
Gold Open Access:Nein
In SCOPUS:Ja
In ISI Web of Science:Nein
ISSN:1049-5258
Status:veröffentlicht
Stichwörter:causal discovery, time series analysis, causal inference, causality, machine learning, hidden variables
Veranstaltungstitel:Thirty-fourth Conference on Neural Information Processing Systems (NeurIPS 2020)
Veranstaltungsort:Online
Veranstaltungsart:internationale Konferenz
Veranstaltungsbeginn:6 Dezember 2020
Veranstaltungsende:12 Dezember 2020
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Raumfahrt
HGF - Programmthema:keine Zuordnung
DLR - Schwerpunkt:Raumfahrt
DLR - Forschungsgebiet:R - keine Zuordnung
DLR - Teilgebiet (Projekt, Vorhaben):R - keine Zuordnung
Standort: Jena
Institute & Einrichtungen:Institut für Datenwissenschaften > Datenmanagement und Analyse
Hinterlegt von: Gerhardus, Andreas
Hinterlegt am:04 Mär 2021 14:51
Letzte Änderung:13 Nov 2024 15:21

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.