Gerhardus, Andreas und Runge, Jakob (2020) High-recall causal discovery for autocorrelated time series with latent confounders. In: 34th Conference on Neural Information Processing Systems, NeurIPS 2020. Thirty-fourth Conference on Neural Information Processing Systems (NeurIPS 2020), 2020-12-06 - 2020-12-12, Online. ISSN 1049-5258.
PDF
3MB | |
PDF
13MB |
Offizielle URL: https://papers.nips.cc/paper/2020/hash/94e70705efae423efda1088614128d0b-Abstract.html
Kurzfassung
We present a new method for linear and nonlinear, lagged and contemporaneous constraint-based causal discovery from observational time series in the presence of latent confounders. We show that existing causal discovery methods such as FCI and variants suffer from low recall in the autocorrelated time series case and identify low effect size of conditional independence tests as the main reason. Information-theoretical arguments show that effect size can often be increased if causal parents are included in the conditioning sets. To identify parents early on, we suggest an iterative procedure that utilizes novel orientation rules to determine ancestral relationships already during the edge removal phase. We prove that the method is order-independent, and sound and complete in the oracle case. Extensive simulation studies for different numbers of variables, time lags, sample sizes, and further cases demonstrate that our method indeed achieves much higher recall than existing methods for the case of autocorrelated continuous variables while keeping false positives at the desired level. This performance gain grows with stronger autocorrelation. At github.com/jakobrunge/tigramite we provide Python code for all methods involved in the simulation studies.
elib-URL des Eintrags: | https://elib.dlr.de/138893/ | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Konferenzbeitrag (Vortrag, Poster) | ||||||||||||
Titel: | High-recall causal discovery for autocorrelated time series with latent confounders | ||||||||||||
Autoren: |
| ||||||||||||
Datum: | Dezember 2020 | ||||||||||||
Erschienen in: | 34th Conference on Neural Information Processing Systems, NeurIPS 2020 | ||||||||||||
Referierte Publikation: | Ja | ||||||||||||
Open Access: | Ja | ||||||||||||
Gold Open Access: | Nein | ||||||||||||
In SCOPUS: | Ja | ||||||||||||
In ISI Web of Science: | Nein | ||||||||||||
ISSN: | 1049-5258 | ||||||||||||
Status: | veröffentlicht | ||||||||||||
Stichwörter: | causal discovery, time series analysis, causal inference, causality, machine learning, hidden variables | ||||||||||||
Veranstaltungstitel: | Thirty-fourth Conference on Neural Information Processing Systems (NeurIPS 2020) | ||||||||||||
Veranstaltungsort: | Online | ||||||||||||
Veranstaltungsart: | internationale Konferenz | ||||||||||||
Veranstaltungsbeginn: | 6 Dezember 2020 | ||||||||||||
Veranstaltungsende: | 12 Dezember 2020 | ||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||
HGF - Programmthema: | keine Zuordnung | ||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||
DLR - Forschungsgebiet: | R - keine Zuordnung | ||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - keine Zuordnung | ||||||||||||
Standort: | Jena | ||||||||||||
Institute & Einrichtungen: | Institut für Datenwissenschaften > Datenmanagement und Analyse | ||||||||||||
Hinterlegt von: | Gerhardus, Andreas | ||||||||||||
Hinterlegt am: | 04 Mär 2021 14:51 | ||||||||||||
Letzte Änderung: | 13 Nov 2024 15:21 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags