Staab, Jeroen und Schady, Arthur und Weigand, Matthias und Lakes, Tobia und Taubenböck, Hannes (2022) Predicting traffic noise using land use regression – A scalable approach. Journal of Exposure Science and Environmental Epidemiology, 32, Seiten 232-243. Springer Nature. doi: 10.1038/s41370-021-00355-z. ISSN 1559-0631.
PDF
- Verlagsversion (veröffentlichte Fassung)
3MB |
Offizielle URL: https://www.nature.com/jes/
Kurzfassung
Background In modern societies, noise is ubiquitous. It is an annoyance and can have a negative impact on human health as well as on the environment. Despite increasing evidence of its negative impacts, spatial knowledge about noise distribution remains limited. Up to now, noise mapping is frequently inhibited by the necessary resources and therefore limited to selected areas. Objective Based on the assumption, that prevalent noise is determined by the arrangement of sources and the surrounding environment in which the sound propagates, we build a geostatistical model representing these parameters. Aiming for a large-scale noise mapping approach, we utilize publicly available data, context-aware feature engineering and a linear land-use regression (LUR) model. Methods Compliant to the European Noise Directive 2002/49/EG, we work at a high spatial granularity of 10 × 10-m resolution. As reference, we use the day–evening–night noise level indicator Lden. Therewith, we carry out 2000 virtual field campaigns simulating different sampling schemes and introduce spatial cross-validation concepts to test the transferability to new areas. Results The experimental results suggest the necessity for more than 500 samples stratified over the different noise levels to produce a representative model. Eventually, using 21 selected variables, our model was able to explain large proportions of the yearly averaged road noise (Lden) variability (R2 = 0.702) with a mean absolute error of 4.24 dB(A), 3.84 dB(A) for build-up areas, respectively. In applying this best performing model for an area-wide prediction, we spatially close the blank spots in existing noise maps with continuous noise levels for the entire range from 24 to 106 dB(A). Significance This data is new, particular for small communities that have not been mapped sufficiently in Europe so far. In conjunction, our findings also supplement conventionally sampled studies using physical microphones and spatially blocked cross-validations.
elib-URL des Eintrags: | https://elib.dlr.de/138872/ | ||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Zeitschriftenbeitrag | ||||||||||||||||||||||||
Titel: | Predicting traffic noise using land use regression – A scalable approach | ||||||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||||||
Datum: | 2022 | ||||||||||||||||||||||||
Erschienen in: | Journal of Exposure Science and Environmental Epidemiology | ||||||||||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||||||||||
Open Access: | Ja | ||||||||||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||||||||||
In ISI Web of Science: | Ja | ||||||||||||||||||||||||
Band: | 32 | ||||||||||||||||||||||||
DOI: | 10.1038/s41370-021-00355-z | ||||||||||||||||||||||||
Seitenbereich: | Seiten 232-243 | ||||||||||||||||||||||||
Verlag: | Springer Nature | ||||||||||||||||||||||||
ISSN: | 1559-0631 | ||||||||||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||||||||||
Stichwörter: | Urban; Traffic Noise; Land Use Regression; Linear Model; Cross Validation; Environmental Justice | ||||||||||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||||||||||
HGF - Programmthema: | Erdbeobachtung | ||||||||||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||||||||||
DLR - Forschungsgebiet: | R EO - Erdbeobachtung | ||||||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Fernerkundung u. Geoforschung, R - Geowissenschaftl. Fernerkundungs- und GIS-Verfahren | ||||||||||||||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||||||||||||||
Institute & Einrichtungen: | Deutsches Fernerkundungsdatenzentrum > Georisiken und zivile Sicherheit Institut für Physik der Atmosphäre > Verkehrsmeteorologie | ||||||||||||||||||||||||
Hinterlegt von: | Staab, Jeroen | ||||||||||||||||||||||||
Hinterlegt am: | 02 Dez 2020 13:42 | ||||||||||||||||||||||||
Letzte Änderung: | 28 Jun 2023 13:35 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags