Strohmann, Tobias und Bugelnig, Katrin und Breitbarth, Eric und Wilde, Fabian und Steffens, Thomas und Germann, Holger und Requena, Guillermo (2019) Semantic segmentation of synchrotron tomography of multiphase Al-Si alloys using a convolutional neural network with a pixel-wise weighted loss function. Scientific Reports (9). Nature Publishing Group. doi: 10.1038/s41598-019-56008-7. ISSN 2045-2322.
Dieses Archiv kann nicht den Volltext zur Verfügung stellen.
Offizielle URL: https://www.nature.com/articles/s41598-019-56008-7
Kurzfassung
Human-based segmentation of tomographic images can be a tedious time-consuming task. Deep learning algorithms and, particularly, convolutional neural networks have become state of the art techniques for pattern recognition in digital images that can replace human-based image segmentation. However, their use in materials science is beginning to be explored and their application needs to be adapted to the specific needs of this field. In the present work, a convolutional neural network is trained to segment the microstructural components of an Al-Si cast alloy imaged using synchrotron X-ray tomography. A pixel-wise weighted error function is implemented to account for microstructural features which are hard to identify in the tomographs and that play a relevant role for the correct description of the 3D architecture of the alloy investigated. The results show that the total operation time for the segmentation using the trained convolutional neural network was reduced to <1% of the time needed with human-based segmentation.
elib-URL des Eintrags: | https://elib.dlr.de/138731/ | ||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Zeitschriftenbeitrag | ||||||||||||||||||||||||||||||||
Titel: | Semantic segmentation of synchrotron tomography of multiphase Al-Si alloys using a convolutional neural network with a pixel-wise weighted loss function | ||||||||||||||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||||||||||||||
Datum: | Dezember 2019 | ||||||||||||||||||||||||||||||||
Erschienen in: | Scientific Reports | ||||||||||||||||||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||||||||||||||||||
Open Access: | Ja | ||||||||||||||||||||||||||||||||
Gold Open Access: | Ja | ||||||||||||||||||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||||||||||||||||||
In ISI Web of Science: | Ja | ||||||||||||||||||||||||||||||||
DOI: | 10.1038/s41598-019-56008-7 | ||||||||||||||||||||||||||||||||
Verlag: | Nature Publishing Group | ||||||||||||||||||||||||||||||||
ISSN: | 2045-2322 | ||||||||||||||||||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||||||||||||||||||
Stichwörter: | Semantic Segmentation, Synchrotron Tomography, Deep Learning, Convolutional Neural Networks, AlSi-Alloy | ||||||||||||||||||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||||||||||||||
HGF - Programm: | Luftfahrt | ||||||||||||||||||||||||||||||||
HGF - Programmthema: | Flugzeuge | ||||||||||||||||||||||||||||||||
DLR - Schwerpunkt: | Luftfahrt | ||||||||||||||||||||||||||||||||
DLR - Forschungsgebiet: | L AR - Aircraft Research | ||||||||||||||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | L - Strukturen und Werkstoffe (alt), L - Simulation und Validierung (alt) | ||||||||||||||||||||||||||||||||
Standort: | Köln-Porz | ||||||||||||||||||||||||||||||||
Institute & Einrichtungen: | Institut für Werkstoff-Forschung > Metallische Strukturen und hybride Werkstoffsysteme | ||||||||||||||||||||||||||||||||
Hinterlegt von: | Strohmann, Tobias | ||||||||||||||||||||||||||||||||
Hinterlegt am: | 15 Dez 2020 13:58 | ||||||||||||||||||||||||||||||||
Letzte Änderung: | 31 Okt 2023 13:29 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags