Huang, Xin und Li, Shuang und Li, Jiayi und Zhu, Xiao Xiang und Benediktsson, Jon Atli (2021) A Multi-Spectral and Multi-Angle 3-D Convolutional Neural Network for the Classification of ZY-3 Satellite Images over Urban Areas. IEEE Transactions on Geoscience and Remote Sensing, 59 (12), Seiten 10266-10285. IEEE - Institute of Electrical and Electronics Engineers. doi: 10.1109/TGRS.2020.3037211. ISSN 0196-2892.
PDF
- Verlagsversion (veröffentlichte Fassung)
11MB |
Offizielle URL: https://ieeexplore.ieee.org/document/9266127
Kurzfassung
The recent availability of high-resolution multiview ZY-3 satellite images, with angular information, can provide an opportunity to capture 3-D structural features for classification. In high-resolution image classification over urban areas, objects with diverse vertical structures make urban landscape more heterogeneous in 3-D space and consequently can make the classification challenging. In this article, a novel multiangle gray-level cooccurrence tensor feature is proposed based on the multiview bands of the ZY-3 imagery, namely, GLCMMA-T. The GLCMMA-T feature captures the distributions of the gray-level spatial variation under different viewing angles, which can depict the 3-D textures and structures of urban objects. The spectral and GLCMMA-T tensor features are interpreted by two 3-D convolutional neural network (CNN) streams and then concatenated as the input to the fully connected layer. This novel multispectral and multiangle 3-D convolutional neural network (M²-3-DCNN) combines the spectral and angular information, and the fused feature has the potential to provide a comprehensive description of urban objects with complex vertical structures. The experimental results on ZY-3 multiview images from four test areas indicate that the proposed method can significantly improve the classification accuracy when compared with several state-of-the-art multiangle features and deep-learning-based image classification methods.
elib-URL des Eintrags: | https://elib.dlr.de/138665/ | ||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Zeitschriftenbeitrag | ||||||||||||||||||||||||
Titel: | A Multi-Spectral and Multi-Angle 3-D Convolutional Neural Network for the Classification of ZY-3 Satellite Images over Urban Areas | ||||||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||||||
Datum: | Dezember 2021 | ||||||||||||||||||||||||
Erschienen in: | IEEE Transactions on Geoscience and Remote Sensing | ||||||||||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||||||||||
Open Access: | Ja | ||||||||||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||||||||||
In ISI Web of Science: | Ja | ||||||||||||||||||||||||
Band: | 59 | ||||||||||||||||||||||||
DOI: | 10.1109/TGRS.2020.3037211 | ||||||||||||||||||||||||
Seitenbereich: | Seiten 10266-10285 | ||||||||||||||||||||||||
Verlag: | IEEE - Institute of Electrical and Electronics Engineers | ||||||||||||||||||||||||
ISSN: | 0196-2892 | ||||||||||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||||||||||
Stichwörter: | 3D convolutional network, ZY-3, satellite images, classification, urban areas | ||||||||||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||||||||||
HGF - Programmthema: | Erdbeobachtung | ||||||||||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||||||||||
DLR - Forschungsgebiet: | R EO - Erdbeobachtung | ||||||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Vorhaben hochauflösende Fernerkundungsverfahren (alt) | ||||||||||||||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||||||||||||||
Institute & Einrichtungen: | Institut für Methodik der Fernerkundung > EO Data Science | ||||||||||||||||||||||||
Hinterlegt von: | Bratasanu, Ion-Dragos | ||||||||||||||||||||||||
Hinterlegt am: | 30 Nov 2020 18:15 | ||||||||||||||||||||||||
Letzte Änderung: | 01 Feb 2023 03:00 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags