Li, Qingyu und Shi, Yilei und Auer, Stefan und Roschlaub, Robert und Moest, Karin und Schmitt, Michael und Zhu, Xiao Xiang (2020) Detection of Undocumented Buildings using Convolutional Neural Network and Official Geodata. In: ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, V-2, Seiten 517-524. ISPRS 2020, 2020-08-31 - 2020-09-02, Nice, France ONLINE. doi: 10.5194/isprs-annals-V-2-2020-517-2020. ISSN 2194-9042.
PDF
6MB |
Offizielle URL: https://www.isprs-ann-photogramm-remote-sens-spatial-inf-sci.net/V-2-2020/517/2020/
Kurzfassung
Undocumented buildings are buildings which were built years ago, but were never recorded in official digital cadastral maps.Detection of undocumented buildings is of great importance for urban planning and monitoring. The state of Bavaria, Germany,pursues this task based on high resolution optical data and digital surface models, using semi-automatic detection methods, whichsuffer from a high false alarm rate. In order to study the influence of sampling strategies on the performance of building detection, we have firstly designed a transferability analysis experiment, which has not been adequately addressed in the current literature.In this experiment, we test whether the trained model from a district contains valuable information for building detection in adifferent district. It was found that the large-scale building detection results can be considerably improved when training samplesare collected from different districts. Based on the building detection results, we propose a novel framework for the detection ofundocumented buildings using Convolutional Neural Network (CNN) and official geodata. More specifically, buildings are identifiedas undocumented, when their pixels in the output of the CNN are predicted as ”building”, whereas they belong to the ”non-building”in the Digital Cadastral Map (DFK). The detected undocumented building pixels are subsequently divided into the class of old or newundocumented building with the aid of a Temporal Digital Surface Model (tDSM) in the stage of decision fusion. By doing so, aseamless map of undocumented buildings is generated for 1/4th of the state of Bavaria, Germany at a spatial resolution of 0.4 m,which has demonstrated the use of CNN for the robust detection of undocumented buildings at large-scale.
elib-URL des Eintrags: | https://elib.dlr.de/138618/ | ||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Konferenzbeitrag (Vortrag) | ||||||||||||||||||||||||||||||||
Titel: | Detection of Undocumented Buildings using Convolutional Neural Network and Official Geodata | ||||||||||||||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||||||||||||||
Datum: | 2020 | ||||||||||||||||||||||||||||||||
Erschienen in: | ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences | ||||||||||||||||||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||||||||||||||||||
Open Access: | Ja | ||||||||||||||||||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||||||||||||||||||
In ISI Web of Science: | Ja | ||||||||||||||||||||||||||||||||
Band: | V-2 | ||||||||||||||||||||||||||||||||
DOI: | 10.5194/isprs-annals-V-2-2020-517-2020 | ||||||||||||||||||||||||||||||||
Seitenbereich: | Seiten 517-524 | ||||||||||||||||||||||||||||||||
ISSN: | 2194-9042 | ||||||||||||||||||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||||||||||||||||||
Stichwörter: | Building Detection, Convolutional Neural Network, Deep Learning, Semantic Segmentation, Decision Fusion | ||||||||||||||||||||||||||||||||
Veranstaltungstitel: | ISPRS 2020 | ||||||||||||||||||||||||||||||||
Veranstaltungsort: | Nice, France ONLINE | ||||||||||||||||||||||||||||||||
Veranstaltungsart: | internationale Konferenz | ||||||||||||||||||||||||||||||||
Veranstaltungsbeginn: | 31 August 2020 | ||||||||||||||||||||||||||||||||
Veranstaltungsende: | 2 September 2020 | ||||||||||||||||||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||||||||||||||||||
HGF - Programmthema: | Erdbeobachtung | ||||||||||||||||||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||||||||||||||||||
DLR - Forschungsgebiet: | R EO - Erdbeobachtung | ||||||||||||||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Vorhaben hochauflösende Fernerkundungsverfahren (alt) | ||||||||||||||||||||||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||||||||||||||||||||||
Institute & Einrichtungen: | Institut für Methodik der Fernerkundung > EO Data Science Institut für Methodik der Fernerkundung > Photogrammetrie und Bildanalyse | ||||||||||||||||||||||||||||||||
Hinterlegt von: | Li, Qingyu | ||||||||||||||||||||||||||||||||
Hinterlegt am: | 03 Dez 2020 13:51 | ||||||||||||||||||||||||||||||||
Letzte Änderung: | 24 Apr 2024 20:40 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags