Guan, Banglei and Zhao, Ji and Zhang, Li and Fang, Sun and Fraundorfer, Friedrich (2020) Minimal Solutions for Relative Pose with a Single Affine Correspondence. In: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2020, pp. 1929-1938. IEEE. CVPR 2020 VIRTUAL, 14.-19. 6.2020, online. doi: 10.1109/CVPR42600.2020.00200. ISBN 978-172817168-5. ISSN 1063-6919.
![]() |
PDF
2MB |
Official URL: http://cvpr2020.thecvf.com/
Abstract
In this paper we present four cases of minimal solutions for two-view relative pose estimation by exploiting the affine transformation between feature points and we demonstrate efficient solvers for these cases. It is shown, that under the planar motion assumption or with knowledge of a vertical direction, a single affine correspondence is sufficient to recover the relative camera pose. The four cases considered are two-view planar relative motion for calibrated cameras as a closed-form and a least-squares solution, a closedform solution for unknown focal length and the case of a known vertical direction. These algorithms can be used efficiently for outlier detection within a RANSAC loop and for initial motion estimation. All the methods are evaluated on both synthetic data and real-world datasets from the KITTI benchmark. The experimental results demonstrate that our methods outperform comparable state-of-the-art methods in accuracy with the benefit of a reduced number of needed RANSAC iterations.
Item URL in elib: | https://elib.dlr.de/138342/ | ||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Document Type: | Conference or Workshop Item (Speech) | ||||||||||||||||||||||||
Title: | Minimal Solutions for Relative Pose with a Single Affine Correspondence | ||||||||||||||||||||||||
Authors: |
| ||||||||||||||||||||||||
Date: | 2020 | ||||||||||||||||||||||||
Journal or Publication Title: | 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2020 | ||||||||||||||||||||||||
Refereed publication: | Yes | ||||||||||||||||||||||||
Open Access: | Yes | ||||||||||||||||||||||||
Gold Open Access: | No | ||||||||||||||||||||||||
In SCOPUS: | Yes | ||||||||||||||||||||||||
In ISI Web of Science: | No | ||||||||||||||||||||||||
DOI: | 10.1109/CVPR42600.2020.00200 | ||||||||||||||||||||||||
Page Range: | pp. 1929-1938 | ||||||||||||||||||||||||
Publisher: | IEEE | ||||||||||||||||||||||||
ISSN: | 1063-6919 | ||||||||||||||||||||||||
ISBN: | 978-172817168-5 | ||||||||||||||||||||||||
Status: | Published | ||||||||||||||||||||||||
Keywords: | affine transforms, cameras, image motion analysis, iterative methods, least squares approximations object detection, pose estimation | ||||||||||||||||||||||||
Event Title: | CVPR 2020 VIRTUAL | ||||||||||||||||||||||||
Event Location: | online | ||||||||||||||||||||||||
Event Type: | international Conference | ||||||||||||||||||||||||
Event Dates: | 14.-19. 6.2020 | ||||||||||||||||||||||||
HGF - Research field: | Aeronautics, Space and Transport | ||||||||||||||||||||||||
HGF - Program: | Transport | ||||||||||||||||||||||||
HGF - Program Themes: | Road Transport | ||||||||||||||||||||||||
DLR - Research area: | Transport | ||||||||||||||||||||||||
DLR - Program: | V ST Straßenverkehr | ||||||||||||||||||||||||
DLR - Research theme (Project): | V - NGC KoFiF (old) | ||||||||||||||||||||||||
Location: | Oberpfaffenhofen | ||||||||||||||||||||||||
Institutes and Institutions: | Remote Sensing Technology Institute > Photogrammetry and Image Analysis | ||||||||||||||||||||||||
Deposited By: | Knickl, Sabine | ||||||||||||||||||||||||
Deposited On: | 26 Nov 2020 12:37 | ||||||||||||||||||||||||
Last Modified: | 10 Aug 2023 08:52 |
Repository Staff Only: item control page