Bi, Haixia und Yao, Jing und Wei, Zhiqiang und Hong, Danfeng und Chanussot, Jocelyn (2022) PolSAR Image Classification Based on Robust Low-Rank Feature Extraction and Markov Random Field. IEEE Geoscience and Remote Sensing Letters, 19, Seite 4005205. IEEE - Institute of Electrical and Electronics Engineers. doi: 10.1109/LGRS.2020.3034700. ISSN 1545-598X.
PDF
- Preprintversion (eingereichte Entwurfsversion)
2MB |
Offizielle URL: https://ieeexplore.ieee.org/abstract/document/9252858
Kurzfassung
Polarimetric synthetic aperture radar (PolSAR) image classification has been investigated vigorously in various remote sensing applications. However, it is still a challenging task nowadays. One significant barrier lies in the speckle effect embedded in the PolSAR imaging process, which greatly degrades the quality of the images and further complicates the classification. To this end, we present a novel PolSAR image classification method that removes speckle noise via low-rank (LR) feature extraction and enforces smoothness priors via the Markov random field (MRF). Especially, we employ the mixture of Gaussian-based robust LR matrix factorization to simultaneously extract discriminative features and remove complex noises.Then, a classification map is obtained by applying a convolutional neural network with data augmentation on the extracted features, where local consistency is implicitly involved, and the insufficient label issue is alleviated. Finally, we refine the classificationmap by MRF to enforce contextual smoothness. We conduct experiments on two benchmark PolSAR data sets. Experimental results indicate that the proposed method achieves promising classification performance and preferable spatial consistency.
elib-URL des Eintrags: | https://elib.dlr.de/138283/ | ||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Zeitschriftenbeitrag | ||||||||||||||||||||||||
Titel: | PolSAR Image Classification Based on Robust Low-Rank Feature Extraction and Markov Random Field | ||||||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||||||
Datum: | 2022 | ||||||||||||||||||||||||
Erschienen in: | IEEE Geoscience and Remote Sensing Letters | ||||||||||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||||||||||
Open Access: | Ja | ||||||||||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||||||||||
In ISI Web of Science: | Ja | ||||||||||||||||||||||||
Band: | 19 | ||||||||||||||||||||||||
DOI: | 10.1109/LGRS.2020.3034700 | ||||||||||||||||||||||||
Seitenbereich: | Seite 4005205 | ||||||||||||||||||||||||
Verlag: | IEEE - Institute of Electrical and Electronics Engineers | ||||||||||||||||||||||||
ISSN: | 1545-598X | ||||||||||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||||||||||
Stichwörter: | Convolutional neural network (CNN), low-rank(LR) matrix factorization, Markov random field (MRF), mixtureof Gaussian (MoG), polarimetric synthetic aperture radar (Pol-SAR) image classification | ||||||||||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||||||||||
HGF - Programmthema: | Erdbeobachtung | ||||||||||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||||||||||
DLR - Forschungsgebiet: | R EO - Erdbeobachtung | ||||||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - SAR-Methoden | ||||||||||||||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||||||||||||||
Institute & Einrichtungen: | Institut für Methodik der Fernerkundung > EO Data Science | ||||||||||||||||||||||||
Hinterlegt von: | Liu, Rong | ||||||||||||||||||||||||
Hinterlegt am: | 26 Nov 2020 09:47 | ||||||||||||||||||||||||
Letzte Änderung: | 19 Okt 2023 14:21 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags