Griparis, Andreea und Faur, Daniela und Datcu, Mihai (2020) DR-KNN: A hybrid Approach for Dimensionality Reduction of EO Image Datasets. In: 2020 IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2020, Seiten 1-4. IGARSS 2020, 2020-09-26 - 2020-10-02, Virtual. doi: 10.1109/IGARSS39084.2020.9323633. ISBN 978-172816374-1. ISSN 2153-6996.
PDF
84kB |
Offizielle URL: https://igarss2020.org/view_paper.php?PaperNum=4114
Kurzfassung
The two Sentinel-2 satellites provide, since March 2017, high-resolution worldwide images every five days, freely distributed, generating terabytes of high-dimensional data. An intuitive manner to summarize the main characteristics of the data and gather knowledge is visual exploratory analysis, which is often based on dimensionality reduction methods to represent high-dimensional data. From previous research and the state-of-the-art literature, turned out that t-distributed Stochastic Neighbour Embedding is one of the most appropriate technique to reduce the dimensionality of a dataset, but it requires very high computational power. To overcome this inconvenience, we proposed two hybrid DR algorithms, which combine the DR with the nearest neighbour technique or random forest regression. The main conclusion is that our approaches reduce computational power without compromising the representation quality.
elib-URL des Eintrags: | https://elib.dlr.de/138137/ | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Konferenzbeitrag (Vortrag) | ||||||||||||||||
Titel: | DR-KNN: A hybrid Approach for Dimensionality Reduction of EO Image Datasets | ||||||||||||||||
Autoren: |
| ||||||||||||||||
Datum: | 2020 | ||||||||||||||||
Erschienen in: | 2020 IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2020 | ||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||
Open Access: | Ja | ||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||
In ISI Web of Science: | Ja | ||||||||||||||||
DOI: | 10.1109/IGARSS39084.2020.9323633 | ||||||||||||||||
Seitenbereich: | Seiten 1-4 | ||||||||||||||||
ISSN: | 2153-6996 | ||||||||||||||||
ISBN: | 978-172816374-1 | ||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||
Stichwörter: | dimensionality reduction, visual exploratory analysis, remote sensing, high-dimensional data | ||||||||||||||||
Veranstaltungstitel: | IGARSS 2020 | ||||||||||||||||
Veranstaltungsort: | Virtual | ||||||||||||||||
Veranstaltungsart: | internationale Konferenz | ||||||||||||||||
Veranstaltungsbeginn: | 26 September 2020 | ||||||||||||||||
Veranstaltungsende: | 2 Oktober 2020 | ||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||
HGF - Programmthema: | Erdbeobachtung | ||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||
DLR - Forschungsgebiet: | R EO - Erdbeobachtung | ||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Vorhaben hochauflösende Fernerkundungsverfahren (alt) | ||||||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||||||
Institute & Einrichtungen: | Institut für Methodik der Fernerkundung > EO Data Science | ||||||||||||||||
Hinterlegt von: | Karmakar, Chandrabali | ||||||||||||||||
Hinterlegt am: | 25 Nov 2020 17:18 | ||||||||||||||||
Letzte Änderung: | 07 Jun 2024 09:50 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags