elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

Feature-free Explainable Data Mining in SAR Images Using Latent Dirichlet Allocation

Karmakar, Chandrabali und Dumitru, Corneliu Octavian und Schwarz, Gottfried und Datcu, Mihai (2020) Feature-free Explainable Data Mining in SAR Images Using Latent Dirichlet Allocation. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 14, Seiten 676-689. IEEE - Institute of Electrical and Electronics Engineers. doi: 10.1109/JSTARS.2020.3039012. ISSN 1939-1404.

[img] PDF - Verlagsversion (veröffentlichte Fassung)
4MB

Offizielle URL: https://ieeexplore.ieee.org/document/9263324/

Kurzfassung

In this paper, we propose a promising approach for the application-oriented content classification of space-borne radar imagery that presents an interesting alternative to popular current machine learning algorithms. In the following, we consider the problem of unsupervised feature-free satellite image classification as an explainable data mining problem for regions with no prior information. Three important issues are addressed here: explainability, unsupervision and feature-independence. There is an increasing demand towards explainable machine learning models as they strive to meet the “right to explanation”. The importance of feature-free classification stems from the problem that different classification outcomes are obtained from using different features and the complexity of computing sophisticated image primitive features. Developing unsupervised discovery techniques helps overcome the limitations in object discovery due to the lack of labelled data and the dependence on features. In this paper, we demonstrate the applicability of the Latent Dirichlet Allocation (LDA) model, one of the most established unsupervised probabilistic methods, in discovering the latent structure of synthetic aperture radar (SAR) data. The idea is to use LDA as an explainable data mining tool to discover scientifically explainable semantic relations. The suitability of the approach as an explainable model is discussed and interpretable topic representation maps are produced which practically demonstrate the idea of “interpretability” in the explainable machine learning paradigm. LDA discovers the latent structure in the data as a set of topics. We create the interpretable visualizations of the data utilizing these topics and compute the topic distributions for each land-cover class.

elib-URL des Eintrags:https://elib.dlr.de/138136/
Dokumentart:Zeitschriftenbeitrag
Titel:Feature-free Explainable Data Mining in SAR Images Using Latent Dirichlet Allocation
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Karmakar, ChandrabaliChandrabali.Karmakar (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Dumitru, Corneliu OctavianCorneliu.Dumitru (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Schwarz, GottfriedGottfried.Schwarz (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Datcu, MihaiMihai.Datcu (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Datum:November 2020
Erschienen in:IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing
Referierte Publikation:Ja
Open Access:Ja
Gold Open Access:Ja
In SCOPUS:Ja
In ISI Web of Science:Ja
Band:14
DOI:10.1109/JSTARS.2020.3039012
Seitenbereich:Seiten 676-689
Verlag:IEEE - Institute of Electrical and Electronics Engineers
ISSN:1939-1404
Status:veröffentlicht
Stichwörter:Bag-of-Words technique, Latent Dirichlet Allocation, unsupervised image classification, Synthetic Aperture Radar, explainable machine learning, interpretability, discovery
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Raumfahrt
HGF - Programmthema:Erdbeobachtung
DLR - Schwerpunkt:Raumfahrt
DLR - Forschungsgebiet:R EO - Erdbeobachtung
DLR - Teilgebiet (Projekt, Vorhaben):R - Vorhaben hochauflösende Fernerkundungsverfahren (alt)
Standort: Oberpfaffenhofen
Institute & Einrichtungen:Institut für Methodik der Fernerkundung > EO Data Science
Hinterlegt von: Dumitru, Corneliu Octavian
Hinterlegt am:27 Nov 2020 15:35
Letzte Änderung:24 Okt 2023 12:03

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.