elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

Comparing the Lasso Predictor-Selection and Regression Method with Classical Approaches of Precipitation Bias Adjustment in Decadal Climate Predictions

Li, Jingmin und Pollinger, Felix und Paeth, Heiko (2020) Comparing the Lasso Predictor-Selection and Regression Method with Classical Approaches of Precipitation Bias Adjustment in Decadal Climate Predictions. Monthly Weather Review, 148 (10), Seiten 4339-4351. American Meteorological Society. doi: 10.1175/MWR-D-19-0302.1. ISSN 0027-0644.

[img] PDF - Nur DLR-intern zugänglich - Verlagsversion (veröffentlichte Fassung)
2MB

Offizielle URL: http://dx.doi.org/10.1175/MWR-D-19-0302.1

Kurzfassung

In this study, we investigate the technical application of the regularized regression method Lasso for identifying systematic biases in decadal precipitation predictions from a high-resolution regional climate model (CCLM) for Europe. The Lasso approach is quite novel in climatological research. We apply Lasso to observed precipitation and a large number of predictors related to precipitation derived from a training simulation, and transfer the trained Lasso regression model to a virtual forecast simulation for testing. Derived predictors from the model include local predictors at a given grid box and EOF predictors that describe large-scale patterns of variability for the same simulated variables. A major added value of the Lasso function is the variation of the so-called shrinkage factor and its ability in eliminating irrelevant predictors and avoiding overfitting. Among 18 different settings, an optimal shrinkage factor is identified that indicates a robust relationship between predictand and predictors. It turned out that large-scale patterns as represented by the EOF predictors outperform local predictors. The bias adjustment using the Lasso approach mainly improves the seasonal cycle of the precipitation prediction and, hence, improves the phase relationship and reduces the root-mean-square error between model prediction and observations. Another goal of the study pertains to the comparison of the Lasso performance with classical model output statistics and with a bivariate bias correction approach. In fact, Lasso is characterized by a similar and regionally higher skill than classical approaches of model bias correction. In addition, it is computationally less expensive. Therefore, we see a large potential for the application of the Lasso algorithm in a wider range of climatological applications when it comes to regression-based statistical transfer functions in statistical downscaling and model bias adjustment.

elib-URL des Eintrags:https://elib.dlr.de/138043/
Dokumentart:Zeitschriftenbeitrag
Titel:Comparing the Lasso Predictor-Selection and Regression Method with Classical Approaches of Precipitation Bias Adjustment in Decadal Climate Predictions
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Li, JingminDLR, IPA und Univ. Würzburghttps://orcid.org/0000-0002-4434-0029NICHT SPEZIFIZIERT
Pollinger, FelixUniv. WürzburgNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Paeth, HeikoUniv. WürzburgNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Datum:Oktober 2020
Erschienen in:Monthly Weather Review
Referierte Publikation:Ja
Open Access:Nein
Gold Open Access:Nein
In SCOPUS:Ja
In ISI Web of Science:Ja
Band:148
DOI:10.1175/MWR-D-19-0302.1
Seitenbereich:Seiten 4339-4351
Herausgeber:
HerausgeberInstitution und/oder E-Mail-Adresse der HerausgeberHerausgeber-ORCID-iDORCID Put Code
Hacker, JoshNICHT SPEZIFIZIERTNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Verlag:American Meteorological Society
ISSN:0027-0644
Status:veröffentlicht
Stichwörter:Bias, Empirical orthogonal functions, Statistical techniques, Hindcasts, Seasonal forecasting, Climate models
HGF - Forschungsbereich:keine Zuordnung
HGF - Programm:keine Zuordnung
HGF - Programmthema:keine Zuordnung
DLR - Schwerpunkt:keine Zuordnung
DLR - Forschungsgebiet:keine Zuordnung
DLR - Teilgebiet (Projekt, Vorhaben):keine Zuordnung
Standort: Oberpfaffenhofen
Institute & Einrichtungen:Institut für Physik der Atmosphäre > Erdsystem-Modellierung
Hinterlegt von: Li, Jingmin
Hinterlegt am:24 Nov 2020 11:28
Letzte Änderung:24 Okt 2023 14:28

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.