elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

CG-Net: Conditional GIS-aware Network for Individual Building Segmentation in VHR SAR Images

Sun, Yao und Hua, Yuansheng und Mou, LiChao und Zhu, Xiao Xiang (2022) CG-Net: Conditional GIS-aware Network for Individual Building Segmentation in VHR SAR Images. IEEE Transactions on Geoscience and Remote Sensing, 60, Seite 5201215. IEEE - Institute of Electrical and Electronics Engineers. doi: 10.1109/TGRS.2020.3043089. ISSN 0196-2892.

[img] PDF - Verlagsversion (veröffentlichte Fassung)
15MB

Offizielle URL: https://ieeexplore.ieee.org/document/9321533

Kurzfassung

Object retrieval and reconstruction from very high resolution (VHR) synthetic aperture radar (SAR) images are of great importance for urban SAR applications, yet highly challenging owing to the complexity of SAR data. This paper addresses the issue of individual building segmentation from a single VHR SAR image in large-scale urban areas. To achieve this, we introduce building footprints from GIS data as complementary information and propose a novel conditional GIS-aware network (CG-Net). The proposed model learns multi-level visual features and employs building footprints to normalize the features for predicting building masks in the SAR image. We validate our method using a high resolution spotlight TerraSAR-X image collected over Berlin. Experimental results show that the proposed CG-Net effectively brings improvements with variant backbones. We further compare two representations of building footprints, namely complete building footprints and sensor-visible footprint segments, for our task, and conclude that the use of the former leads to better segmentation results. Moreover, we investigate the impact of inaccurate GIS data on our CG-Net, and this study shows that CG-Net is robust against positioning errors in GIS data. In addition, we propose an approach of ground truth generation of buildings from an accurate digital elevation model (DEM), which can be used to generate large-scale SAR image datasets. The segmentation results can be applied to reconstruct 3D building models at level-of-detail (LoD) 1, which is demonstrated in our experiments.

elib-URL des Eintrags:https://elib.dlr.de/138029/
Dokumentart:Zeitschriftenbeitrag
Titel:CG-Net: Conditional GIS-aware Network for Individual Building Segmentation in VHR SAR Images
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Sun, YaoYao.Sun (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Hua, YuanshengYuansheng.Hua (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Mou, LiChaoLiChao.Mou (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Zhu, Xiao Xiangxiao.zhu (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Datum:Januar 2022
Erschienen in:IEEE Transactions on Geoscience and Remote Sensing
Referierte Publikation:Ja
Open Access:Ja
Gold Open Access:Nein
In SCOPUS:Ja
In ISI Web of Science:Ja
Band:60
DOI:10.1109/TGRS.2020.3043089
Seitenbereich:Seite 5201215
Verlag:IEEE - Institute of Electrical and Electronics Engineers
ISSN:0196-2892
Status:veröffentlicht
Stichwörter:deep convolutional neural network (CNN), GIS, individual building segmentation, large-scale urban areas, synthetic aperture radar (SAR)
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Raumfahrt
HGF - Programmthema:Erdbeobachtung
DLR - Schwerpunkt:Raumfahrt
DLR - Forschungsgebiet:R EO - Erdbeobachtung
DLR - Teilgebiet (Projekt, Vorhaben):R - Künstliche Intelligenz
Standort: Oberpfaffenhofen
Institute & Einrichtungen:Institut für Methodik der Fernerkundung > EO Data Science
Hinterlegt von: Sun, Yao
Hinterlegt am:27 Nov 2020 17:47
Letzte Änderung:28 Jun 2023 13:56

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.