Ebel, Patrick und Meraner, Andrea und Schmitt, Michael und Zhu, Xiao Xiang (2020) Multi-Sensor Data Fusion for Cloud Removal in Global and All-Season Sentinel-2 Imagery. IEEE Transactions on Geoscience and Remote Sensing, 59 (7), Seiten 5866-5878. IEEE - Institute of Electrical and Electronics Engineers. doi: 10.1109/TGRS.2020.3024744. ISSN 0196-2892.
PDF
- Verlagsversion (veröffentlichte Fassung)
4MB |
Offizielle URL: https://ieeexplore.ieee.org/document/9211498
Kurzfassung
The majority of optical observations acquired via spaceborne Earth imagery are affected by clouds. While there is numerous prior work on reconstructing cloud-covered information, previous studies are, oftentimes, confined to narrowly defined regions of interest, raising the question of whether an approach can generalize to a diverse set of observations acquired at variable cloud coverage or in different regions and seasons. We target the challenge of generalization by curating a large novel data set for training new cloud removal approaches and evaluate two recently proposed performance metrics of image quality and diversity. Our data set is the first publically available to contain a global sample of coregistered radar and optical observations, cloudy and cloud-free. Based on the observation that cloud coverage varies widely between clear skies and absolute coverage, we propose a novel model that can deal with either extreme and evaluate its performance on our proposed data set. Finally, we demonstrate the superiority of training models on real over synthetic data, underlining the need for a carefully curated data set of real observations. To facilitate future research, our data set is made available online.
elib-URL des Eintrags: | https://elib.dlr.de/138015/ | ||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Zeitschriftenbeitrag | ||||||||||||||||||||
Titel: | Multi-Sensor Data Fusion for Cloud Removal in Global and All-Season Sentinel-2 Imagery | ||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||
Datum: | 2 Oktober 2020 | ||||||||||||||||||||
Erschienen in: | IEEE Transactions on Geoscience and Remote Sensing | ||||||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||||||
Open Access: | Ja | ||||||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||||||
In ISI Web of Science: | Ja | ||||||||||||||||||||
Band: | 59 | ||||||||||||||||||||
DOI: | 10.1109/TGRS.2020.3024744 | ||||||||||||||||||||
Seitenbereich: | Seiten 5866-5878 | ||||||||||||||||||||
Verlag: | IEEE - Institute of Electrical and Electronics Engineers | ||||||||||||||||||||
ISSN: | 0196-2892 | ||||||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||||||
Stichwörter: | Cloud removal, data fusion, deep learning, generative adversarial network (GAN), optical imagery, synthetic aperture radar (SAR) | ||||||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||||||
HGF - Programmthema: | Erdbeobachtung | ||||||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||||||
DLR - Forschungsgebiet: | R EO - Erdbeobachtung | ||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Optische Fernerkundung, R - Künstliche Intelligenz | ||||||||||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||||||||||
Institute & Einrichtungen: | Institut für Methodik der Fernerkundung > EO Data Science | ||||||||||||||||||||
Hinterlegt von: | Liu, Rong | ||||||||||||||||||||
Hinterlegt am: | 26 Nov 2020 11:31 | ||||||||||||||||||||
Letzte Änderung: | 05 Dez 2023 07:38 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags