Ma, Lei und Schmitt, Michael und Zhu, Xiao Xiang (2020) Uncertainty analysis of object-based land cover classification using time series of Sentinel-2 data. Remote Sensing, 12 (22), Seiten 1-17. Multidisciplinary Digital Publishing Institute (MDPI). doi: 10.3390/rs12223798. ISSN 2072-4292.
PDF
- Verlagsversion (veröffentlichte Fassung)
5MB |
Offizielle URL: https://www.mdpi.com/2072-4292/12/22/3798
Kurzfassung
Recently, time-series from optical satellite data have been frequently used in object-based land-cover classification. This poses a significant challenge to object-based image analysis (OBIA) owing to the presence of complex spatio-temporal information in the time-series data. This study evaluates object-based land-cover classification in the northern suburbs of Munich using time-series from optical Sentinel data. Using a random forest classifier as the backbone, experiments were designed to analyze the impact of the segmentation scale, features (including spectral and temporal features), categories, frequency, and acquisition timing of optical satellite images. Based on our analyses, the following findings are reported: (1) Optical Sentinel images acquired over four seasons can make a significant contribution to the classification of agricultural areas, even though this contribution varies between spectral bands for the same period. (2) The use of time-series data alleviates the issue of identifying the “optimal” segmentation scale. The finding of this study can provide a more comprehensive understanding of the effects of classification uncertainty on object-based dense multi-temporal image classification.
elib-URL des Eintrags: | https://elib.dlr.de/138008/ | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Zeitschriftenbeitrag | ||||||||||||||||
Titel: | Uncertainty analysis of object-based land cover classification using time series of Sentinel-2 data | ||||||||||||||||
Autoren: |
| ||||||||||||||||
Datum: | November 2020 | ||||||||||||||||
Erschienen in: | Remote Sensing | ||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||
Open Access: | Ja | ||||||||||||||||
Gold Open Access: | Ja | ||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||
In ISI Web of Science: | Ja | ||||||||||||||||
Band: | 12 | ||||||||||||||||
DOI: | 10.3390/rs12223798 | ||||||||||||||||
Seitenbereich: | Seiten 1-17 | ||||||||||||||||
Verlag: | Multidisciplinary Digital Publishing Institute (MDPI) | ||||||||||||||||
ISSN: | 2072-4292 | ||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||
Stichwörter: | OBIA; multi-temporal; random forest; mapping; optical Sentinel data | ||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||
HGF - Programmthema: | Erdbeobachtung | ||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||
DLR - Forschungsgebiet: | R EO - Erdbeobachtung | ||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Optische Fernerkundung | ||||||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||||||
Institute & Einrichtungen: | Institut für Methodik der Fernerkundung > EO Data Science | ||||||||||||||||
Hinterlegt von: | Liu, Rong | ||||||||||||||||
Hinterlegt am: | 26 Nov 2020 11:18 | ||||||||||||||||
Letzte Änderung: | 26 Nov 2020 11:18 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags