elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

Graph Relation Network: Modeling Relations between Scenes for Multi-Label Remote Sensing Image Classification and Retrieval

Kang, Jian und Fernandez-Beltran, Ruben und Hong, Danfeng und Chanussot, Jocelyn und Plaza, Antonio (2021) Graph Relation Network: Modeling Relations between Scenes for Multi-Label Remote Sensing Image Classification and Retrieval. IEEE Transactions on Geoscience and Remote Sensing, 59 (5), Seiten 4355-4369. IEEE - Institute of Electrical and Electronics Engineers. doi: 10.1109/TGRS.2020.3016020. ISSN 0196-2892.

Dieses Archiv kann nicht den Volltext zur Verfügung stellen.

Offizielle URL: https://ieeexplore.ieee.org/document/9173783

Kurzfassung

Due to the proliferation of large-scale remote-sensing (RS) archives with multiple annotations, multilabel RS scene classification and retrieval are becoming increasingly popular. Although some recent deep learning-based methods are able to achieve promising results in this context, the lack of research on how to learn embedding spaces under the multilabel assumption often makes these models unable to preserve complex semantic relations pervading aerial scenes, which is an important limitation in RS applications. To fill this gap, we propose a new graph relation network (GRN) for multilabel RS scene categorization. Our GRN is able to model the relations between samples (or scenes) by making use of a graph structure which is fed into network learning. For this purpose, we define a new loss function called scalable neighbor discriminative loss with binary cross entropy (SNDL-BCE) that is able to embed the graph structures through the networks more effectively. The proposed approach can guide deep learning techniques (such as convolutional neural networks) to a more discriminative metric space, where semantically similar RS scenes are closely embedded and dissimilar images are separated from a novel multilabel viewpoint. To achieve this goal, our GRN jointly maximizes a weighted leave-one-out K -nearest neighbors ( K NN) score in the training set, where the weight matrix describes the contributions of the nearest neighbors associated with each RS image on its class decision, and the likelihood of the class discrimination in the multilabel scenario. An extensive experimental comparison, conducted on three multilabel RS scene data archives, validates the effectiveness of the proposed GRN in terms of K NN classification and image retrieval. The codes of this article will be made publicly available for reproducible research in the community.

elib-URL des Eintrags:https://elib.dlr.de/137923/
Dokumentart:Zeitschriftenbeitrag
Titel:Graph Relation Network: Modeling Relations between Scenes for Multi-Label Remote Sensing Image Classification and Retrieval
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Kang, JiantumNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Fernandez-Beltran, RubenInstitute of New Imaging Technologies, University Jaume I, 12071 Castellón de la Plana, Spain.NICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Hong, DanfengDanfeng.Hong (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Chanussot, Jocelynjocelyn (at) hi.isNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Plaza, Antonioaplaza (at) unex.esNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Datum:Mai 2021
Erschienen in:IEEE Transactions on Geoscience and Remote Sensing
Referierte Publikation:Ja
Open Access:Nein
Gold Open Access:Nein
In SCOPUS:Ja
In ISI Web of Science:Ja
Band:59
DOI:10.1109/TGRS.2020.3016020
Seitenbereich:Seiten 4355-4369
Verlag:IEEE - Institute of Electrical and Electronics Engineers
ISSN:0196-2892
Status:veröffentlicht
Stichwörter:Deep learning, loss function, metric learning,multilabel scene categorization, neighbor embedding, remote sensing
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Raumfahrt
HGF - Programmthema:Erdbeobachtung
DLR - Schwerpunkt:Raumfahrt
DLR - Forschungsgebiet:R EO - Erdbeobachtung
DLR - Teilgebiet (Projekt, Vorhaben):R - Künstliche Intelligenz
Standort: Oberpfaffenhofen
Institute & Einrichtungen:Institut für Methodik der Fernerkundung > EO Data Science
Hinterlegt von: Liu, Rong
Hinterlegt am:26 Nov 2020 11:14
Letzte Änderung:24 Aug 2021 16:15

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.