elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

Deep Relearning in the Geospatial Domain for Semantic Remote Sensing Image Segmentation

Geiß, Christian und Zhu, Yue und Qiu, Chunping und Mou, LiChao und Zhu, Xiao Xiang und Taubenböck, Hannes (2022) Deep Relearning in the Geospatial Domain for Semantic Remote Sensing Image Segmentation. IEEE Geoscience and Remote Sensing Letters, 19, Seiten 1-5. IEEE - Institute of Electrical and Electronics Engineers. doi: 10.1109/LGRS.2020.3031339. ISSN 1545-598X.

[img] PDF - Preprintversion (eingereichte Entwurfsversion)
4MB

Offizielle URL: https://ieeexplore.ieee.org/document/9247397

Kurzfassung

We present a classification postprocessing (CPP) technique based on fully convolutional neural networks (CNNs) for semantic remote sensing image segmentation. Conventional CPP techniques aim to enhance the classification accuracy by imposing smoothness priors in the image domain. Contrary to that, here, a relearning strategy is proposed where the initial classification outcome of a CNN model is provided to a subsequent CNN model via an extended input space to guide the learning of discriminative feature representations in an end-to-end fashion. This deep relearning CNN (DRCNN) explicitly accounts for the geospatial domain by taking the spatial alignment of preliminary class labels into account. Hereby, we evaluate to learn the DRCNN in a cumulative and noncumulative way, i.e., extending the input space based on all previous or solely preceding model outputs, respectively, during an iterative procedure. Besides, the DRCNN can also be conveniently coupled with alternative CPP techniques such as object-based voting (OBV). The experimental results obtained from two test sites of WorldView-II imagery underline the beneficial performance properties of the DRCNN models. They can increase the accuracies of the initial CNN models on average from 72.64% to 76.01% and from 92.43% to 94.52% in terms of κ statistic. An additional increase of 1.65 and 2.84 percentage points can be achieved when combining the DRCNN models with an OBV strategy. From an epistemological point of view, our results underline that CNNs can benefit from the consideration of preliminary model outcomes and that conventional CPP techniques can profit from an upstream relearning strategy.

elib-URL des Eintrags:https://elib.dlr.de/137428/
Dokumentart:Zeitschriftenbeitrag
Titel:Deep Relearning in the Geospatial Domain for Semantic Remote Sensing Image Segmentation
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Geiß, ChristianChristian.Geiss (at) dlr.dehttps://orcid.org/0000-0002-7961-8553NICHT SPEZIFIZIERT
Zhu, Yueyz591 (at) cam.ac.ukNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Qiu, ChunpingTechnical University MünchenNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Mou, LiChaoLiChao.Mou (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Zhu, Xiao Xiangxiao.zhu (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Taubenböck, HannesHannes.Taubenboeck (at) dlr.dehttps://orcid.org/0000-0003-4360-9126NICHT SPEZIFIZIERT
Datum:2022
Erschienen in:IEEE Geoscience and Remote Sensing Letters
Referierte Publikation:Ja
Open Access:Ja
Gold Open Access:Nein
In SCOPUS:Ja
In ISI Web of Science:Ja
Band:19
DOI:10.1109/LGRS.2020.3031339
Seitenbereich:Seiten 1-5
Verlag:IEEE - Institute of Electrical and Electronics Engineers
ISSN:1545-598X
Status:veröffentlicht
Stichwörter:Classification postprocessing (CPP), convolutional neural networks (CNNs), deep learning, relearning
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Raumfahrt
HGF - Programmthema:Erdbeobachtung
DLR - Schwerpunkt:Raumfahrt
DLR - Forschungsgebiet:R EO - Erdbeobachtung
DLR - Teilgebiet (Projekt, Vorhaben):R - Fernerkundung u. Geoforschung, R - Geowissenschaftl. Fernerkundungs- und GIS-Verfahren, R - Künstliche Intelligenz
Standort: Oberpfaffenhofen
Institute & Einrichtungen:Deutsches Fernerkundungsdatenzentrum > Georisiken und zivile Sicherheit
Institut für Methodik der Fernerkundung > EO Data Science
Hinterlegt von: Geiß, Christian
Hinterlegt am:19 Nov 2020 11:22
Letzte Änderung:28 Mär 2023 23:57

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.