elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Imprint | Privacy Policy | Contact | Deutsch
Fontsize: [-] Text [+]

Multistrategy ensemble regression for mapping of built-up density and height with Sentinel-2 data

Geiß, Christian and Schrade, Henrik and Aravena Pelizari, Patrick and Taubenböck, Hannes (2020) Multistrategy ensemble regression for mapping of built-up density and height with Sentinel-2 data. ISPRS Journal of Photogrammetry and Remote Sensing, 170, pp. 57-71. Elsevier. doi: 10.1016/j.isprsjprs.2020.10.004. ISSN 0924-2716.

[img] PDF - Preprint version (submitted draft)
6MB

Official URL: https://www.sciencedirect.com/science/article/abs/pii/S0924271620302768#!

Abstract

In this paper, we establish a workflow for estimation of built-up density and height based on multispectral Sentinel-2 data. To do so, we render the estimation of built-up density and height as a supervised learning problem. Given the rational level of measurement of those two target variables, the regression estimation problem is regarded as finding the mapping between an incoming vector, i.e., ubiquitously available features computed from Sentinel-2 data, and an observable output (i.e., training set), which is derived over spatially limited areas in an automated manner. As such, training sets are automatically generated from a joint exploitation of TanDEM-X mission elevation data and Sentinel-2 imagery, and, as an alternative, from cadastral sources. The training sets are used to regress the target variables for spatial processing units which correspond to urban neighborhood scales. From a methodological point of view, we introduce a novel ensemble regression approach, i.e., multistrategy ensemble regression (MSER), based on advanced machine learning-based regression algorithms including Random Forest Regression, Support Vector Regression, Gaussian Process Regression, and Neural Network Regression. To establish a robust ensemble, those algorithms are learned with a modified version of the AdaBoost.RT algorithm. However, to reliably ensure diversity between single boosted regressors, we include a random feature subspace method in the procedure. In contrast to existing approaches, we selectively prune non-favorable regressors trained during the boosting procedure and calculate the final prediction by a weighted mean function on the residual models to ensure enhanced accuracy properties of predictions. Finally, outputs are concatenated into a single prediction with a decision fusion strategy. Experimental results are obtained from four test areas which cover the settlement areas of the four largest German cites, i.e., Berlin, Hamburg, Munich, and Cologne. The results unambiguously underline the beneficial properties of the MSER approach, since all best predictions were obtained with a boosted regressor in conjunction with a decision fusion strategy in a comparative setup. The mean absolute errors of corresponding models vary between 3 and 16% and 1–5.4 m with respect to built-up density and height, respectively, depending on the validation strategy, size of the spatial processing units, and test area. Also in a domain adaptation setup (i.e., when learning a model over a source domain and applying it over a geographically different target domain) numerous predictions show comparable accuracy levels as predictions obtained within a source domain. This further underlines the viability to transfer a model and, thus, enable a substitution of the training data in the target domains.

Item URL in elib:https://elib.dlr.de/137425/
Document Type:Article
Title:Multistrategy ensemble regression for mapping of built-up density and height with Sentinel-2 data
Authors:
AuthorsInstitution or Email of AuthorsAuthor's ORCID iDORCID Put Code
Geiß, ChristianUNSPECIFIEDhttps://orcid.org/0000-0002-7961-8553UNSPECIFIED
Schrade, HenrikUNSPECIFIEDUNSPECIFIEDUNSPECIFIED
Aravena Pelizari, PatrickUNSPECIFIEDhttps://orcid.org/0000-0003-0984-4675UNSPECIFIED
Taubenböck, HannesUNSPECIFIEDhttps://orcid.org/0000-0003-4360-9126UNSPECIFIED
Date:December 2020
Journal or Publication Title:ISPRS Journal of Photogrammetry and Remote Sensing
Refereed publication:Yes
Open Access:Yes
Gold Open Access:No
In SCOPUS:Yes
In ISI Web of Science:Yes
Volume:170
DOI:10.1016/j.isprsjprs.2020.10.004
Page Range:pp. 57-71
Publisher:Elsevier
ISSN:0924-2716
Status:Published
Keywords:Sentinel-2 TanDEM-X Urban morphology Built-up height estimation Built-up density estimation Regression models
HGF - Research field:Aeronautics, Space and Transport
HGF - Program:Space
HGF - Program Themes:Earth Observation
DLR - Research area:Raumfahrt
DLR - Program:R EO - Earth Observation
DLR - Research theme (Project):R - Geoscientific remote sensing and GIS methods, R - Remote Sensing and Geo Research
Location: Oberpfaffenhofen
Institutes and Institutions:German Remote Sensing Data Center > Geo Risks and Civil Security
Deposited By: Geiß, Christian
Deposited On:19 Nov 2020 11:21
Last Modified:23 Oct 2023 13:56

Repository Staff Only: item control page

Browse
Search
Help & Contact
Information
electronic library is running on EPrints 3.3.12
Website and database design: Copyright © German Aerospace Center (DLR). All rights reserved.