elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

Endmember Bundle Extraction based on Multi-objective Optimization

Liu, Rong und Zhu, Xiao Xiang (2021) Endmember Bundle Extraction based on Multi-objective Optimization. IEEE Transactions on Geoscience and Remote Sensing, 59 (10), Seiten 8630-8645. IEEE - Institute of Electrical and Electronics Engineers. doi: 10.1109/TGRS.2020.3037249. ISSN 0196-2892.

[img] PDF - Postprintversion (akzeptierte Manuskriptversion)
7MB

Offizielle URL: https://ieeexplore.ieee.org/document/9268973

Kurzfassung

A number of endmember extraction methods have been developed to identify pure pixels in hyperspectral images (HSIs). The majority of them use only one spectrum to represent one kind of material, which ignores the spectral variability problem that particularly characterizes a HSI with high spatial resolution. Only a few algorithms have been developed to identify multiple endmembers representing the spectral variability within each class, called endmember bundle extraction (EBE). This article introduces multiobjective particle swarm optimization for the identification of multiple endmember spectra with variability. Unlike existing convex geometry-based EBE methods, which operate on a single geometry of the dataspace, the proposed method divides the observed data into subsets along the spectral dimension and simultaneously operates on multiple dataspaces to obtain candidate endmembers based on multiobjective particle swarm optimization. The candidate endmembers are then refined by spatial post-processing and sequential forward floating selection to produce the final result. Experiments are conducted on both synthetic and real hyperspectral data to demonstrate the effectiveness of the proposed method in comparison with several state-of-the-art methods.

elib-URL des Eintrags:https://elib.dlr.de/137270/
Dokumentart:Zeitschriftenbeitrag
Titel:Endmember Bundle Extraction based on Multi-objective Optimization
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Liu, RongRong.Liu (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Zhu, Xiao Xiangxiao.zhu (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Datum:Oktober 2021
Erschienen in:IEEE Transactions on Geoscience and Remote Sensing
Referierte Publikation:Ja
Open Access:Ja
Gold Open Access:Nein
In SCOPUS:Ja
In ISI Web of Science:Ja
Band:59
DOI:10.1109/TGRS.2020.3037249
Seitenbereich:Seiten 8630-8645
Verlag:IEEE - Institute of Electrical and Electronics Engineers
ISSN:0196-2892
Status:veröffentlicht
Stichwörter:Endmember bundle extraction, hyperspectral, multi-objective optimization, spectral variability
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Raumfahrt
HGF - Programmthema:Erdbeobachtung
DLR - Schwerpunkt:Raumfahrt
DLR - Forschungsgebiet:R EO - Erdbeobachtung
DLR - Teilgebiet (Projekt, Vorhaben):R - Optische Fernerkundung
Standort: Oberpfaffenhofen
Institute & Einrichtungen:Institut für Methodik der Fernerkundung > EO Data Science
Hinterlegt von: Liu, Rong
Hinterlegt am:25 Nov 2020 18:23
Letzte Änderung:28 Jun 2023 13:56

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.