elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

Combining Twitter and Earth Observation Data for Local Poverty Mapping

Kondmann, Lukas und Häberle, Matthias und Zhu, Xiao Xiang (2020) Combining Twitter and Earth Observation Data for Local Poverty Mapping. In: NeuRIPS Machine Learning for the Developing World Workshop, Seiten 1-5. NeuRIPS Machine Learning for the Developing World Workshop, 2020-12-12, Vancouver, Canada.

[img] PDF
773kB

Offizielle URL: https://drive.google.com/file/d/12W7p4TBAlUV57EN-Iv4QofOdCNnr3tmp

Kurzfassung

Accurate and timely data on economic development is essential for policy-makers in low- and middle-income countries where such data is often unavailable. To fill this gap, existing approaches have used alternative data sources to proxy for levels of local development such as satellite imagery or mobile phone data. In this paper, we underline the power of an underrated data source for poverty mapping: Geolocated tweets. We show that the number of tweets in a region as singular input can already explain 55 % of the variation in local wealth in Sub-Saharan Africa with a simple Random Forest model. When nighttime light and Twitter usage information are combined as inputs to a Random Forest model they already explain 65% of the variation in local wealth which is in the range of state-of-the-art neural network architectures based on satellite images. Our results show that the naive combination of these data sources in a random forest is already competitive in performance and more elaborate fusion approaches are a promising direction to advance the accuracy of poverty mapping.

elib-URL des Eintrags:https://elib.dlr.de/137109/
Dokumentart:Konferenzbeitrag (Poster)
Titel:Combining Twitter and Earth Observation Data for Local Poverty Mapping
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Kondmann, LukasLukas.Kondmann (at) dlr.dehttps://orcid.org/0000-0002-2253-6936NICHT SPEZIFIZIERT
Häberle, MatthiasMatthias.Haeberle (at) dlr.dehttps://orcid.org/0000-0001-9550-5252NICHT SPEZIFIZIERT
Zhu, Xiao Xiangxiaoxiang.zhu (at) dlr.dehttps://orcid.org/0000-0001-5530-3613NICHT SPEZIFIZIERT
Datum:2020
Erschienen in:NeuRIPS Machine Learning for the Developing World Workshop
Referierte Publikation:Ja
Open Access:Ja
Gold Open Access:Nein
In SCOPUS:Nein
In ISI Web of Science:Nein
Seitenbereich:Seiten 1-5
Status:veröffentlicht
Stichwörter:Remote Sensing, Poverty Mapping, Twitter, Data Fusion
Veranstaltungstitel:NeuRIPS Machine Learning for the Developing World Workshop
Veranstaltungsort:Vancouver, Canada
Veranstaltungsart:internationale Konferenz
Veranstaltungsdatum:12 Dezember 2020
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Raumfahrt
HGF - Programmthema:Erdbeobachtung
DLR - Schwerpunkt:Raumfahrt
DLR - Forschungsgebiet:R EO - Erdbeobachtung
DLR - Teilgebiet (Projekt, Vorhaben):R - Fernerkundung u. Geoforschung
Standort: Oberpfaffenhofen
Institute & Einrichtungen:Institut für Methodik der Fernerkundung > EO Data Science
Hinterlegt von: Kondmann, Lukas
Hinterlegt am:13 Nov 2020 11:13
Letzte Änderung:24 Apr 2024 20:39

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.