Baumeister, Philipp and Padovan, Sebastiano and Tosi, Nicola and Montavon, Grégoire and Nettelmann, Nadine and MacKenzie, Jasmine and Godolt, Mareike (2020) Machine learning inference of the interior structure of low-mass exoplanet. The Astrophysical Journal, 889 (1). American Astronomical Society. doi: 10.3847/1538-4357/ab5d32. ISSN 0004-637X.
PDF
- Published version
1MB |
Official URL: https://iopscience.iop.org/article/10.3847/1538-4357/ab5d32
Abstract
We explore the application of machine-learning based on mixture density neural networks (MDNs) to the interior characterization of low-mass exoplanets up to 25 Earth masses constrained by mass, radius, and fluid Love number, k 2. We create a data set of 900,000 synthetic planets, consisting of an iron-rich core, a silicate mantle, a high-pressure ice shell, and a gaseous H/He envelope, to train a MDN using planetary mass and radius as inputs to the network. For this layered structure, we show that the MDN is able to infer the distribution of possible thicknesses of each planetary layer from mass and radius of the planet. This approach obviates the time-consuming task of calculating such distributions with a dedicated set of forward models for each individual planet. While gas-rich planets may be characterized by compositional gradients rather than distinct layers, the method presented here can be easily extended to any interior structure model. The fluid Love number k 2 bears constraints on the mass distribution in the planets' interiors and will be measured for an increasing number of exoplanets in the future. Adding k 2 as an input to the MDN significantly decreases the degeneracy of the possible interior structures. In an open repository, we provide the trained MDN to be used through a Python Notebook.
Item URL in elib: | https://elib.dlr.de/136726/ | ||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Document Type: | Article | ||||||||||||||||||||||||||||||||
Title: | Machine learning inference of the interior structure of low-mass exoplanet | ||||||||||||||||||||||||||||||||
Authors: |
| ||||||||||||||||||||||||||||||||
Date: | 2020 | ||||||||||||||||||||||||||||||||
Journal or Publication Title: | The Astrophysical Journal | ||||||||||||||||||||||||||||||||
Refereed publication: | Yes | ||||||||||||||||||||||||||||||||
Open Access: | Yes | ||||||||||||||||||||||||||||||||
Gold Open Access: | No | ||||||||||||||||||||||||||||||||
In SCOPUS: | Yes | ||||||||||||||||||||||||||||||||
In ISI Web of Science: | Yes | ||||||||||||||||||||||||||||||||
Volume: | 889 | ||||||||||||||||||||||||||||||||
DOI: | 10.3847/1538-4357/ab5d32 | ||||||||||||||||||||||||||||||||
Publisher: | American Astronomical Society | ||||||||||||||||||||||||||||||||
ISSN: | 0004-637X | ||||||||||||||||||||||||||||||||
Status: | Published | ||||||||||||||||||||||||||||||||
Keywords: | Exoplanet structure; Exoplanets; Neural networks; Planetary interior; Computational methods; Planetary theory | ||||||||||||||||||||||||||||||||
HGF - Research field: | Aeronautics, Space and Transport | ||||||||||||||||||||||||||||||||
HGF - Program: | Space | ||||||||||||||||||||||||||||||||
HGF - Program Themes: | Space Exploration | ||||||||||||||||||||||||||||||||
DLR - Research area: | Raumfahrt | ||||||||||||||||||||||||||||||||
DLR - Program: | R EW - Space Exploration | ||||||||||||||||||||||||||||||||
DLR - Research theme (Project): | R - Exploration of the Solar System | ||||||||||||||||||||||||||||||||
Location: | Berlin-Adlershof | ||||||||||||||||||||||||||||||||
Institutes and Institutions: | Institute of Planetary Research > Planetary Physics Institute of Planetary Research > Extrasolar Planets and Atmospheres | ||||||||||||||||||||||||||||||||
Deposited By: | Tosi, Dr. Nicola | ||||||||||||||||||||||||||||||||
Deposited On: | 27 Oct 2020 07:45 | ||||||||||||||||||||||||||||||||
Last Modified: | 28 Mar 2023 23:57 |
Repository Staff Only: item control page