Baumeister, Philipp und Padovan, Sebastiano und Tosi, Nicola und Montavon, Grégoire und Nettelmann, Nadine und MacKenzie, Jasmine und Godolt, Mareike (2020) Machine learning inference of the interior structure of low-mass exoplanet. The Astrophysical Journal, 889 (1). American Astronomical Society. doi: 10.3847/1538-4357/ab5d32. ISSN 0004-637X.
PDF
- Verlagsversion (veröffentlichte Fassung)
1MB |
Offizielle URL: https://iopscience.iop.org/article/10.3847/1538-4357/ab5d32
Kurzfassung
We explore the application of machine-learning based on mixture density neural networks (MDNs) to the interior characterization of low-mass exoplanets up to 25 Earth masses constrained by mass, radius, and fluid Love number, k 2. We create a data set of 900,000 synthetic planets, consisting of an iron-rich core, a silicate mantle, a high-pressure ice shell, and a gaseous H/He envelope, to train a MDN using planetary mass and radius as inputs to the network. For this layered structure, we show that the MDN is able to infer the distribution of possible thicknesses of each planetary layer from mass and radius of the planet. This approach obviates the time-consuming task of calculating such distributions with a dedicated set of forward models for each individual planet. While gas-rich planets may be characterized by compositional gradients rather than distinct layers, the method presented here can be easily extended to any interior structure model. The fluid Love number k 2 bears constraints on the mass distribution in the planets' interiors and will be measured for an increasing number of exoplanets in the future. Adding k 2 as an input to the MDN significantly decreases the degeneracy of the possible interior structures. In an open repository, we provide the trained MDN to be used through a Python Notebook.
elib-URL des Eintrags: | https://elib.dlr.de/136726/ | ||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Zeitschriftenbeitrag | ||||||||||||||||||||||||||||||||
Titel: | Machine learning inference of the interior structure of low-mass exoplanet | ||||||||||||||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||||||||||||||
Datum: | 2020 | ||||||||||||||||||||||||||||||||
Erschienen in: | The Astrophysical Journal | ||||||||||||||||||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||||||||||||||||||
Open Access: | Ja | ||||||||||||||||||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||||||||||||||||||
In ISI Web of Science: | Ja | ||||||||||||||||||||||||||||||||
Band: | 889 | ||||||||||||||||||||||||||||||||
DOI: | 10.3847/1538-4357/ab5d32 | ||||||||||||||||||||||||||||||||
Verlag: | American Astronomical Society | ||||||||||||||||||||||||||||||||
ISSN: | 0004-637X | ||||||||||||||||||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||||||||||||||||||
Stichwörter: | Exoplanet structure; Exoplanets; Neural networks; Planetary interior; Computational methods; Planetary theory | ||||||||||||||||||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||||||||||||||||||
HGF - Programmthema: | Erforschung des Weltraums | ||||||||||||||||||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||||||||||||||||||
DLR - Forschungsgebiet: | R EW - Erforschung des Weltraums | ||||||||||||||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Exploration des Sonnensystems | ||||||||||||||||||||||||||||||||
Standort: | Berlin-Adlershof | ||||||||||||||||||||||||||||||||
Institute & Einrichtungen: | Institut für Planetenforschung > Planetenphysik Institut für Planetenforschung > Extrasolare Planeten und Atmosphären | ||||||||||||||||||||||||||||||||
Hinterlegt von: | Tosi, Dr. Nicola | ||||||||||||||||||||||||||||||||
Hinterlegt am: | 27 Okt 2020 07:45 | ||||||||||||||||||||||||||||||||
Letzte Änderung: | 28 Mär 2023 23:57 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags