Agarwal, Siddhant and Tosi, Nicola and Breuer, Doris and Padovan, Sebastiano and Kessel, Pan and Montavon, Grégoire (2020) A machine-learning-based surrogate model of Mars' thermal evolution. Geophysical Journal International, 222 (3), pp. 1656-1670. Oxford University Press. doi: 10.1093/gji/ggaa234. ISSN 0956-540X.
PDF
- Published version
5MB |
Official URL: https://academic.oup.com/gji/article/222/3/1656/5836720
Abstract
Constraining initial conditions and parameters of mantle convection for a planet often requires running several hundred computationally expensive simulations in order to find those matching certain ‘observables’, such as crustal thickness, duration of volcanism, or radial contraction. A lower fidelity alternative is to use 1-D evolution models based on scaling laws that parametrize convective heat transfer. However, this approach is often limited in the amount of physics that scaling laws can accurately represent (e.g. temperature and pressure-dependent rheologies or mineralogical phase transitions can only be marginally simulated). We leverage neural networks to build a surrogate model that can predict the entire evolution (0–4.5 Gyr) of the 1-D temperature profile of a Mars-like planet for a wide range of values of five different parameters: reference viscosity, activation energy and activation volume of diffusion creep, enrichment factor of heat-producing elements in the crust and initial temperature of the mantle. The neural network we evaluate and present here has been trained from a subset of ∼10 000 evolution simulations of Mars ran on a 2-D quarter-cylindrical grid, from which we extracted laterally averaged 1-D temperature profiles. The temperature profiles predicted by this trained network match those of an unseen batch of 2-D simulations with an average accuracy of 99.7per cent.
Item URL in elib: | https://elib.dlr.de/136662/ | ||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Document Type: | Article | ||||||||||||||||||||||||||||
Title: | A machine-learning-based surrogate model of Mars' thermal evolution | ||||||||||||||||||||||||||||
Authors: |
| ||||||||||||||||||||||||||||
Date: | 13 May 2020 | ||||||||||||||||||||||||||||
Journal or Publication Title: | Geophysical Journal International | ||||||||||||||||||||||||||||
Refereed publication: | Yes | ||||||||||||||||||||||||||||
Open Access: | Yes | ||||||||||||||||||||||||||||
Gold Open Access: | No | ||||||||||||||||||||||||||||
In SCOPUS: | Yes | ||||||||||||||||||||||||||||
In ISI Web of Science: | Yes | ||||||||||||||||||||||||||||
Volume: | 222 | ||||||||||||||||||||||||||||
DOI: | 10.1093/gji/ggaa234 | ||||||||||||||||||||||||||||
Page Range: | pp. 1656-1670 | ||||||||||||||||||||||||||||
Publisher: | Oxford University Press | ||||||||||||||||||||||||||||
ISSN: | 0956-540X | ||||||||||||||||||||||||||||
Status: | Published | ||||||||||||||||||||||||||||
Keywords: | Mantle processes, Neural networks, fuzzy logic, Planetary interiors | ||||||||||||||||||||||||||||
HGF - Research field: | Aeronautics, Space and Transport | ||||||||||||||||||||||||||||
HGF - Program: | Space | ||||||||||||||||||||||||||||
HGF - Program Themes: | Space Exploration | ||||||||||||||||||||||||||||
DLR - Research area: | Raumfahrt | ||||||||||||||||||||||||||||
DLR - Program: | R EW - Space Exploration | ||||||||||||||||||||||||||||
DLR - Research theme (Project): | R - Exploration of the Solar System | ||||||||||||||||||||||||||||
Location: | Berlin-Adlershof | ||||||||||||||||||||||||||||
Institutes and Institutions: | Institute of Planetary Research Institute of Planetary Research > Planetary Physics | ||||||||||||||||||||||||||||
Deposited By: | Agarwal, Siddhant | ||||||||||||||||||||||||||||
Deposited On: | 16 Oct 2020 08:20 | ||||||||||||||||||||||||||||
Last Modified: | 24 Oct 2023 11:41 |
Repository Staff Only: item control page