Agarwal, Siddhant und Tosi, Nicola und Breuer, Doris und Padovan, Sebastiano und Kessel, Pan und Montavon, Grégoire (2020) A machine-learning-based surrogate model of Mars' thermal evolution. Geophysical Journal International, 222 (3), Seiten 1656-1670. Oxford University Press. doi: 10.1093/gji/ggaa234. ISSN 0956-540X.
PDF
- Verlagsversion (veröffentlichte Fassung)
5MB |
Offizielle URL: https://academic.oup.com/gji/article/222/3/1656/5836720
Kurzfassung
Constraining initial conditions and parameters of mantle convection for a planet often requires running several hundred computationally expensive simulations in order to find those matching certain ‘observables’, such as crustal thickness, duration of volcanism, or radial contraction. A lower fidelity alternative is to use 1-D evolution models based on scaling laws that parametrize convective heat transfer. However, this approach is often limited in the amount of physics that scaling laws can accurately represent (e.g. temperature and pressure-dependent rheologies or mineralogical phase transitions can only be marginally simulated). We leverage neural networks to build a surrogate model that can predict the entire evolution (0–4.5 Gyr) of the 1-D temperature profile of a Mars-like planet for a wide range of values of five different parameters: reference viscosity, activation energy and activation volume of diffusion creep, enrichment factor of heat-producing elements in the crust and initial temperature of the mantle. The neural network we evaluate and present here has been trained from a subset of ∼10 000 evolution simulations of Mars ran on a 2-D quarter-cylindrical grid, from which we extracted laterally averaged 1-D temperature profiles. The temperature profiles predicted by this trained network match those of an unseen batch of 2-D simulations with an average accuracy of 99.7per cent.
elib-URL des Eintrags: | https://elib.dlr.de/136662/ | ||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Zeitschriftenbeitrag | ||||||||||||||||||||||||||||
Titel: | A machine-learning-based surrogate model of Mars' thermal evolution | ||||||||||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||||||||||
Datum: | 13 Mai 2020 | ||||||||||||||||||||||||||||
Erschienen in: | Geophysical Journal International | ||||||||||||||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||||||||||||||
Open Access: | Ja | ||||||||||||||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||||||||||||||
In ISI Web of Science: | Ja | ||||||||||||||||||||||||||||
Band: | 222 | ||||||||||||||||||||||||||||
DOI: | 10.1093/gji/ggaa234 | ||||||||||||||||||||||||||||
Seitenbereich: | Seiten 1656-1670 | ||||||||||||||||||||||||||||
Verlag: | Oxford University Press | ||||||||||||||||||||||||||||
ISSN: | 0956-540X | ||||||||||||||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||||||||||||||
Stichwörter: | Mantle processes, Neural networks, fuzzy logic, Planetary interiors | ||||||||||||||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||||||||||||||
HGF - Programmthema: | Erforschung des Weltraums | ||||||||||||||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||||||||||||||
DLR - Forschungsgebiet: | R EW - Erforschung des Weltraums | ||||||||||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Exploration des Sonnensystems | ||||||||||||||||||||||||||||
Standort: | Berlin-Adlershof | ||||||||||||||||||||||||||||
Institute & Einrichtungen: | Institut für Planetenforschung Institut für Planetenforschung > Planetenphysik | ||||||||||||||||||||||||||||
Hinterlegt von: | Agarwal, Siddhant | ||||||||||||||||||||||||||||
Hinterlegt am: | 16 Okt 2020 08:20 | ||||||||||||||||||||||||||||
Letzte Änderung: | 24 Okt 2023 11:41 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags