Sapena Moll, Marta and Ruiz, Luis A. (2020) Identifying urban growth patterns through land-use/land-cover spatio-temporal metrics: Simulation and analysis. International Journal of Geographical Information Science, 35 (2), pp. 375-396. Taylor & Francis. doi: 10.1080/13658816.2020.1817463. ISSN 1365-8816.
PDF
- Only accessible within DLR
- Preprint version (submitted draft)
1MB |
Official URL: https://www.tandfonline.com/doi/full/10.1080/13658816.2020.1817463
Abstract
The spatial pattern of urban growth determines how the physical, socio-economic and environmental characteristics of urban areas change over time. Monitoring urban areas for early identification of spatial patterns facilitates assuring their sustainable growth. In this paper, we assess the use of spatio-temporal metrics from land-use/land-cover (LULC) maps to identify growth patterns. We applied LULC change models to simulate different scenarios of urban growth spatial patterns (i.e., expansion, compact, dispersed, road-based and leapfrog) on various baseline urban forms (i.e., monocentric, polycentric, sprawl and linear). Then, we computed the spatio-temporal metrics for the simulated scenarios, selected the most informative metrics by applying discriminant analysis and classified the growth patterns using clustering methods. Two metrics, Weighted mean expansion and Weighted Euclidean distance, which account for the densification, compactness and concentration of urban growth, were the most efficient for classifying the five growth patterns, despite the influence of the baseline urban form. These metrics have the potential to identify growth patterns for monitoring and evaluating the management of developing urban areas.
Item URL in elib: | https://elib.dlr.de/136462/ | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Document Type: | Article | ||||||||||||
Title: | Identifying urban growth patterns through land-use/land-cover spatio-temporal metrics: Simulation and analysis | ||||||||||||
Authors: |
| ||||||||||||
Date: | 9 September 2020 | ||||||||||||
Journal or Publication Title: | International Journal of Geographical Information Science | ||||||||||||
Refereed publication: | Yes | ||||||||||||
Open Access: | No | ||||||||||||
Gold Open Access: | No | ||||||||||||
In SCOPUS: | Yes | ||||||||||||
In ISI Web of Science: | Yes | ||||||||||||
Volume: | 35 | ||||||||||||
DOI: | 10.1080/13658816.2020.1817463 | ||||||||||||
Page Range: | pp. 375-396 | ||||||||||||
Publisher: | Taylor & Francis | ||||||||||||
ISSN: | 1365-8816 | ||||||||||||
Status: | Published | ||||||||||||
Keywords: | Spatio-temporal metrics, urban form, urban simulation, land-use/land-cover change model, growth pattern | ||||||||||||
HGF - Research field: | Aeronautics, Space and Transport | ||||||||||||
HGF - Program: | Space | ||||||||||||
HGF - Program Themes: | Earth Observation | ||||||||||||
DLR - Research area: | Raumfahrt | ||||||||||||
DLR - Program: | R EO - Earth Observation | ||||||||||||
DLR - Research theme (Project): | R - Geoscientific remote sensing and GIS methods, R - Remote Sensing and Geo Research | ||||||||||||
Location: | Oberpfaffenhofen | ||||||||||||
Institutes and Institutions: | German Remote Sensing Data Center > Geo Risks and Civil Security | ||||||||||||
Deposited By: | Sapena Moll, Marta | ||||||||||||
Deposited On: | 07 Oct 2020 10:37 | ||||||||||||
Last Modified: | 24 Oct 2023 11:25 |
Repository Staff Only: item control page