Wang, Shengdi und Shin, Ban-Sok und Shutin, Dmitriy und Dekorsy, Armin (2020) Diffusion Field Estimation Using Decentralized Kernel Kalman Filter with Parameter Learning over Hierarchical Sensor Networks. In: 30th IEEE International Workshop on Machine Learning for Signal Processing, MLSP 2020. IEEE IEEE International Workshop on Machine Learning for Signal Processing, 2020-09-21 - 2020-09-24, Espoo, Finnland. doi: 10.1109/MLSP49062.2020.9231626. ISBN 978-172816662-9. ISSN 2161-0363.
|
PDF
359kB |
Kurzfassung
In this paper, a task is addressed to track a nonlinear timevarying diffusion field based on data collected by sensor networks. By exploiting kernel methods, the nonlinear field function is approximated by a linear combination of kernel functions in a reproducing kernel Hilbert space (RKHS). To capture the dynamical property of a diffusion field and the relation of system input and output data, a state-space model on weights of these kernel functions is constructed with unknown process noise. Thus, the nonlinear tracking problem is transformed into a linear state estimation solved by Kalman filter. Further, this kernel Kalman filter (KKF) is decomposed into a decentralized fashion in a way to collect sensor data efficiently over a hierarchical network structure with different clusters. To adapt the algorithm to unknown process noise, a decentralized variational Bayesian KKF is proposed to learn the distributions of system unknown variables.
| elib-URL des Eintrags: | https://elib.dlr.de/136309/ | ||||||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Dokumentart: | Konferenzbeitrag (Poster) | ||||||||||||||||||||
| Titel: | Diffusion Field Estimation Using Decentralized Kernel Kalman Filter with Parameter Learning over Hierarchical Sensor Networks | ||||||||||||||||||||
| Autoren: |
| ||||||||||||||||||||
| Datum: | 21 September 2020 | ||||||||||||||||||||
| Erschienen in: | 30th IEEE International Workshop on Machine Learning for Signal Processing, MLSP 2020 | ||||||||||||||||||||
| Referierte Publikation: | Ja | ||||||||||||||||||||
| Open Access: | Ja | ||||||||||||||||||||
| Gold Open Access: | Nein | ||||||||||||||||||||
| In SCOPUS: | Ja | ||||||||||||||||||||
| In ISI Web of Science: | Ja | ||||||||||||||||||||
| DOI: | 10.1109/MLSP49062.2020.9231626 | ||||||||||||||||||||
| ISSN: | 2161-0363 | ||||||||||||||||||||
| ISBN: | 978-172816662-9 | ||||||||||||||||||||
| Status: | veröffentlicht | ||||||||||||||||||||
| Stichwörter: | Diffusion field estimation, nonlinear, kernel method, Kalman filter, variational Bayesian method | ||||||||||||||||||||
| Veranstaltungstitel: | IEEE IEEE International Workshop on Machine Learning for Signal Processing | ||||||||||||||||||||
| Veranstaltungsort: | Espoo, Finnland | ||||||||||||||||||||
| Veranstaltungsart: | internationale Konferenz | ||||||||||||||||||||
| Veranstaltungsbeginn: | 21 September 2020 | ||||||||||||||||||||
| Veranstaltungsende: | 24 September 2020 | ||||||||||||||||||||
| HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||
| HGF - Programm: | Raumfahrt | ||||||||||||||||||||
| HGF - Programmthema: | Kommunikation und Navigation | ||||||||||||||||||||
| DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||||||
| DLR - Forschungsgebiet: | R KN - Kommunikation und Navigation | ||||||||||||||||||||
| DLR - Teilgebiet (Projekt, Vorhaben): | R - Vorhaben GNSS2/Neue Dienste und Produkte (alt) | ||||||||||||||||||||
| Standort: | Oberpfaffenhofen | ||||||||||||||||||||
| Institute & Einrichtungen: | Institut für Kommunikation und Navigation > Nachrichtensysteme | ||||||||||||||||||||
| Hinterlegt von: | Shin, Dr.-Ing. Ban-Sok | ||||||||||||||||||||
| Hinterlegt am: | 08 Okt 2020 13:50 | ||||||||||||||||||||
| Letzte Änderung: | 24 Apr 2024 20:38 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags