elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

Data-Driven Techniques to Enhance and Supplement Computational Fluid Dynamics Prediction Capabilities

Bekemeyer, Philipp und Jäckel, Florian und Grabe, Cornelia (2020) Data-Driven Techniques to Enhance and Supplement Computational Fluid Dynamics Prediction Capabilities. First International Workshop on the Application of Machine Learning Techniques to Computational Fluid Dynamics Simulations and Analysis, 2020-06-25, Frankfurt, Germany.

Dieses Archiv kann nicht den Volltext zur Verfügung stellen.

Kurzfassung

Computational fluid dynamics simulations and in particular Reynolds-averaged Navier-Stokes simulations are the backbone of modern aerodynamic analysis and have become a crucial part of aircraft design and analysis. However, when looking at load predictions or moving towards the borders of the flight envelope, existing numerical simulation capabilities are still limited in terms of accuracy, robustness and/or performance. Instead, adding more knowledge through data-driven techniques offers the possibility to tackle some of these weaknesses. Within this work, two different routes will be presented that are currently pursued to enhance and supplement numerical simulation capabilities through data-driven techniques. First, reduced order modeling is introduced in which either a deep neural network architecture or a manifold-learning technique which is combined with a residual minimization strategy are employed to rapidly predict aerodynamic responses throughout the flight envelope. An industrial-relevant aircraft test case is used to demonstrate the performance of the proposed methods. Secondly, an insight into ongoing work on data-driven turbulence modeling is given. The herein presented approach concentrates on the structural uncertainty of the turbulence model transport equations and augments an existing model with a data-based, machine-learned term. Besides a brief description also some demonstration results for an aerodynamically relevant test case are shown.

elib-URL des Eintrags:https://elib.dlr.de/136255/
Dokumentart:Konferenzbeitrag (Vortrag)
Titel:Data-Driven Techniques to Enhance and Supplement Computational Fluid Dynamics Prediction Capabilities
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Bekemeyer, PhilippPhilipp.Bekemeyer (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Jäckel, FlorianFlorian.Jaeckel (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Grabe, Corneliacornelia.grabe (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Datum:25 Juni 2020
Referierte Publikation:Nein
Open Access:Nein
Gold Open Access:Nein
In SCOPUS:Nein
In ISI Web of Science:Nein
Status:veröffentlicht
Stichwörter:Computational Fluid Dynamics, Physics-Informed Machine Learning, Data-Driven Turbulence Modelling, Deep Neural Networks
Veranstaltungstitel:First International Workshop on the Application of Machine Learning Techniques to Computational Fluid Dynamics Simulations and Analysis
Veranstaltungsort:Frankfurt, Germany
Veranstaltungsart:Workshop
Veranstaltungsdatum:25 Juni 2020
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Luftfahrt
HGF - Programmthema:Flugzeuge
DLR - Schwerpunkt:Luftfahrt
DLR - Forschungsgebiet:L AR - Aircraft Research
DLR - Teilgebiet (Projekt, Vorhaben):L - VicToria (alt)
Standort: Braunschweig
Institute & Einrichtungen:Institut für Aerodynamik und Strömungstechnik > CASE, BS
Institut für Aerodynamik und Strömungstechnik > CASE, GO
Hinterlegt von: Bekemeyer, Philipp
Hinterlegt am:01 Okt 2020 14:40
Letzte Änderung:24 Apr 2024 20:38

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.