elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

Joint and Progressive Subspace Analysis (JPSA) with Spatial-Spectral Manifold Alignment for Semi-Supervised Hyperspectral Dimensionality Reduction

Hong, Danfeng und Yokoya, Naoto und Chanussot, Jocelyn und Xu, Jian und Zhu, Xiao Xiang (2021) Joint and Progressive Subspace Analysis (JPSA) with Spatial-Spectral Manifold Alignment for Semi-Supervised Hyperspectral Dimensionality Reduction. IEEE Transactions on Cybernetics, 51 (7), Seiten 3602-3615. IEEE - Institute of Electrical and Electronics Engineers. doi: 10.1109/tcyb.2020.3028931. ISSN 2168-2267.

[img] PDF - Preprintversion (eingereichte Entwurfsversion)
4MB

Offizielle URL: https://ieeexplore.ieee.org/document/9256351

Kurzfassung

Conventional nonlinear subspace learning techniques (e.g., manifold learning) usually introduce some drawbacks in explainability (explicit mapping) and cost effectiveness (linearization), generalization capability (out-of-sample), and representability (spatial–spectral discrimination). To overcome these shortcomings, a novel linearized subspace analysis technique with spatial–spectral manifold alignment is developed for a semisupervised hyperspectral dimensionality reduction (HDR), called joint and progressive subspace analysis (JPSA). The JPSA learns a high-level, semantically meaningful, joint spatial–spectral feature representation from hyperspectral (HS) data by: 1) jointly learning latent subspaces and a linear classifier to find an effective projection direction favorable for classification; 2) progressively searching several intermediate states of subspaces to approach an optimal mapping from the original space to a potential more discriminative subspace; and 3) spatially and spectrally aligning a manifold structure in each learned latent subspace in order to preserve the same or similar topological property between the compressed data and the original data. A simple but effective classifier, that is, nearest neighbor (NN), is explored as a potential application for validating the algorithm performance of different HDR approaches. Extensive experiments are conducted to demonstrate the superiority and effectiveness of the proposed JPSA on two widely used HS datasets: 1) Indian Pines (92.98%) and 2) the University of Houston (86.09%) in comparison with previous state-of-the-art HDR methods.

elib-URL des Eintrags:https://elib.dlr.de/136188/
Dokumentart:Zeitschriftenbeitrag
Titel:Joint and Progressive Subspace Analysis (JPSA) with Spatial-Spectral Manifold Alignment for Semi-Supervised Hyperspectral Dimensionality Reduction
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Hong, DanfengDanfeng.Hong (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Yokoya, NaotoRIKENNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Chanussot, JocelynInstitute Nationale Polytechnique de GrenobleNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Xu, Jianjian.xu (at) dlr.dehttps://orcid.org/0000-0003-2348-125XNICHT SPEZIFIZIERT
Zhu, Xiao Xiangxiao.zhu (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Datum:Juli 2021
Erschienen in:IEEE Transactions on Cybernetics
Referierte Publikation:Ja
Open Access:Ja
Gold Open Access:Nein
In SCOPUS:Ja
In ISI Web of Science:Ja
Band:51
DOI:10.1109/tcyb.2020.3028931
Seitenbereich:Seiten 3602-3615
Verlag:IEEE - Institute of Electrical and Electronics Engineers
ISSN:2168-2267
Status:veröffentlicht
Stichwörter:Dimensionality reduction, hyperspectral data, joint learning, manifold alignment, progressive learning, spatialspectral, semi-supervised, subspace learning.
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Raumfahrt
HGF - Programmthema:Erdbeobachtung
DLR - Schwerpunkt:Raumfahrt
DLR - Forschungsgebiet:R EO - Erdbeobachtung
DLR - Teilgebiet (Projekt, Vorhaben):R - Optische Fernerkundung, R - Künstliche Intelligenz
Standort: Oberpfaffenhofen
Institute & Einrichtungen:Institut für Methodik der Fernerkundung > EO Data Science
Hinterlegt von: Liu, Rong
Hinterlegt am:26 Nov 2020 11:11
Letzte Änderung:28 Jun 2023 13:55

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.