elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

Long Coherent Integration in Passive Radar Systems Using Super-Resolution Sparse Bayesian Learning

Filip-Dhaubhadel, Alexandra und Shutin, Dmitriy (2020) Long Coherent Integration in Passive Radar Systems Using Super-Resolution Sparse Bayesian Learning. IEEE Transactions on Aerospace and Electronic Systems, 57 (1), Seiten 554-572. IEEE - Institute of Electrical and Electronics Engineers. doi: 10.1109/TAES.2020.3026844. ISSN 0018-9251.

[img] PDF - Postprintversion (akzeptierte Manuskriptversion)
22MB

Offizielle URL: https://ieeexplore.ieee.org/document/9206073

Kurzfassung

Maximizing the coherent processing interval (CPI) is crucial when performing passive radar detection on weak signal reflections. In practice however, the CPI is limited by the target movement. In this work, the extent of the range and Doppler migration effects occurring when using a long CPI to integrate the returns from an L-band digital aeronautical communication system (LDACS) based passive radar is studied. In particular, our simulations underline the extensive Doppler migration effect that arises even for non-accelerating targets. To this end, the Keystone transform and fractional Fourier transform techniques are combined with the standard passive radar processing to enable the compensation of both range and Doppler migration effects. This non-model based approach is, however, shown to have limitations, in particular for low signal-to-noise ratios and/or multi-target scenarios. To address these shortcomings, a novel model-based framework that allows to perform joint target detection and parameter estimation is developed. For this, a superresolution sparse Bayesian learning approach is employed. This technique uses a multi-target observation model which accurately accounts for the underlying range and Doppler migration effects and provides super-resolution estimation capabilities. This is particularly advantageous in the LDACS case since the narrow bandwidth generally limits the separation of closely spaced targets. The simulation experiments demonstrate the effectiveness of the algorithm and the advantages it provides when compared to the standard migration compensation approach.

elib-URL des Eintrags:https://elib.dlr.de/136155/
Dokumentart:Zeitschriftenbeitrag
Zusätzliche Informationen:© 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works
Titel:Long Coherent Integration in Passive Radar Systems Using Super-Resolution Sparse Bayesian Learning
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Filip-Dhaubhadel, AlexandraAlexandra.Filip (at) dlr.dehttps://orcid.org/0000-0002-7426-1081NICHT SPEZIFIZIERT
Shutin, DmitriyDmitriy.Shutin (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Datum:2020
Erschienen in:IEEE Transactions on Aerospace and Electronic Systems
Referierte Publikation:Ja
Open Access:Ja
Gold Open Access:Nein
In SCOPUS:Ja
In ISI Web of Science:Ja
Band:57
DOI:10.1109/TAES.2020.3026844
Seitenbereich:Seiten 554-572
Verlag:IEEE - Institute of Electrical and Electronics Engineers
ISSN:0018-9251
Status:veröffentlicht
Stichwörter:coherent processing, range and Doppler migration, LDACS, passive radar, keystone transform, fractional Fourier transform, FrFT, sparse Bayesian learning, super-resolution
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Luftfahrt
HGF - Programmthema:Luftverkehrsmanagement und Flugbetrieb
DLR - Schwerpunkt:Luftfahrt
DLR - Forschungsgebiet:L AO - Air Traffic Management and Operation
DLR - Teilgebiet (Projekt, Vorhaben):L - Kommunikation, Navigation und Überwachung (alt)
Standort: Oberpfaffenhofen
Institute & Einrichtungen:Institut für Kommunikation und Navigation > Nachrichtensysteme
Hinterlegt von: Filip-Dhaubhadel, Dr. Alexandra
Hinterlegt am:01 Okt 2020 16:20
Letzte Änderung:24 Okt 2023 12:54

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.