Shadrin, Dmitrii and Menshchikov, Alexander and Somov, Andrey and Bornemann, Gerhild and Hauslage, Jens and Fedorov, Maxim (2020) Enabling Precision Agriculture Through Embedded Sensing With Artificial Intelligence. IEEE Transactions on Instrumentation and Measurement, 69 (7), pp. 4103-4113. IEEE - Institute of Electrical and Electronics Engineers. doi: 10.1109/TIM.2019.2947125. ISSN 0018-9456.
Full text not available from this repository.
Official URL: https://dx.doi.org/10.1109/TIM.2019.2947125
Abstract
Artificial intelligence (AI) has smoothly penetrated in a number of monitoring and control applications, including agriculture. However, research efforts toward low-power sensing devices with fully functional AI on board are still fragmented. In this article, we present an embedded system enriched with AI, ensuring the continuous analysis and in situ prediction of the growth dynamics of plant leaves. The embedded solution is grounded on a low-power embedded sensing system with a graphics processing unit (GPU) and is able to run the neural network-based AI on board. We use a recurrent neural network (RNN) called the long short-term memory network (LSTM) as a core of AI in our system. The proposed approach guarantees the system autonomous operation for 180 days using a standard Li-ion battery. We rely on the state-of-the-art mobile graphical chips for “smart” analysis and control of autonomous devices. This pilot study opens up wide vista for a variety of intelligent monitoring applications, especially in the agriculture domain. In addition, we share with the research community the Tomato Growth data set.
Item URL in elib: | https://elib.dlr.de/135740/ | ||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Document Type: | Article | ||||||||||||||||||||||||||||
Title: | Enabling Precision Agriculture Through Embedded Sensing With Artificial Intelligence | ||||||||||||||||||||||||||||
Authors: |
| ||||||||||||||||||||||||||||
Date: | 1 July 2020 | ||||||||||||||||||||||||||||
Journal or Publication Title: | IEEE Transactions on Instrumentation and Measurement | ||||||||||||||||||||||||||||
Refereed publication: | Yes | ||||||||||||||||||||||||||||
Open Access: | No | ||||||||||||||||||||||||||||
Gold Open Access: | No | ||||||||||||||||||||||||||||
In SCOPUS: | Yes | ||||||||||||||||||||||||||||
In ISI Web of Science: | Yes | ||||||||||||||||||||||||||||
Volume: | 69 | ||||||||||||||||||||||||||||
DOI: | 10.1109/TIM.2019.2947125 | ||||||||||||||||||||||||||||
Page Range: | pp. 4103-4113 | ||||||||||||||||||||||||||||
Publisher: | IEEE - Institute of Electrical and Electronics Engineers | ||||||||||||||||||||||||||||
ISSN: | 0018-9456 | ||||||||||||||||||||||||||||
Status: | Published | ||||||||||||||||||||||||||||
Keywords: | Artificial intelligence (AI), Embedded sensing, precision agriculture, Sensing and control, Smart sensing | ||||||||||||||||||||||||||||
HGF - Research field: | Aeronautics, Space and Transport | ||||||||||||||||||||||||||||
HGF - Program: | Space | ||||||||||||||||||||||||||||
HGF - Program Themes: | Research under Space Conditions | ||||||||||||||||||||||||||||
DLR - Research area: | Raumfahrt | ||||||||||||||||||||||||||||
DLR - Program: | R FR - Research under Space Conditions | ||||||||||||||||||||||||||||
DLR - Research theme (Project): | R - Projekt :envihab (old), R - Vorhaben Biowissenschaftliche Exp.-vorbereitung (old) | ||||||||||||||||||||||||||||
Location: | Köln-Porz | ||||||||||||||||||||||||||||
Institutes and Institutions: | Institute of Aerospace Medicine > Gravitational Biology | ||||||||||||||||||||||||||||
Deposited By: | Duwe, Helmut | ||||||||||||||||||||||||||||
Deposited On: | 12 Aug 2020 09:51 | ||||||||||||||||||||||||||||
Last Modified: | 12 Aug 2020 09:51 |
Repository Staff Only: item control page