Shadrin, Dmitrii und Menshchikov, Alexander und Somov, Andrey und Bornemann, Gerhild und Hauslage, Jens und Fedorov, Maxim (2020) Enabling Precision Agriculture Through Embedded Sensing With Artificial Intelligence. IEEE Transactions on Instrumentation and Measurement, 69 (7), Seiten 4103-4113. IEEE - Institute of Electrical and Electronics Engineers. doi: 10.1109/TIM.2019.2947125. ISSN 0018-9456.
Dieses Archiv kann nicht den Volltext zur Verfügung stellen.
Offizielle URL: https://dx.doi.org/10.1109/TIM.2019.2947125
Kurzfassung
Artificial intelligence (AI) has smoothly penetrated in a number of monitoring and control applications, including agriculture. However, research efforts toward low-power sensing devices with fully functional AI on board are still fragmented. In this article, we present an embedded system enriched with AI, ensuring the continuous analysis and in situ prediction of the growth dynamics of plant leaves. The embedded solution is grounded on a low-power embedded sensing system with a graphics processing unit (GPU) and is able to run the neural network-based AI on board. We use a recurrent neural network (RNN) called the long short-term memory network (LSTM) as a core of AI in our system. The proposed approach guarantees the system autonomous operation for 180 days using a standard Li-ion battery. We rely on the state-of-the-art mobile graphical chips for “smart” analysis and control of autonomous devices. This pilot study opens up wide vista for a variety of intelligent monitoring applications, especially in the agriculture domain. In addition, we share with the research community the Tomato Growth data set.
elib-URL des Eintrags: | https://elib.dlr.de/135740/ | ||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Zeitschriftenbeitrag | ||||||||||||||||||||||||||||
Titel: | Enabling Precision Agriculture Through Embedded Sensing With Artificial Intelligence | ||||||||||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||||||||||
Datum: | 1 Juli 2020 | ||||||||||||||||||||||||||||
Erschienen in: | IEEE Transactions on Instrumentation and Measurement | ||||||||||||||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||||||||||||||
Open Access: | Nein | ||||||||||||||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||||||||||||||
In ISI Web of Science: | Ja | ||||||||||||||||||||||||||||
Band: | 69 | ||||||||||||||||||||||||||||
DOI: | 10.1109/TIM.2019.2947125 | ||||||||||||||||||||||||||||
Seitenbereich: | Seiten 4103-4113 | ||||||||||||||||||||||||||||
Verlag: | IEEE - Institute of Electrical and Electronics Engineers | ||||||||||||||||||||||||||||
ISSN: | 0018-9456 | ||||||||||||||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||||||||||||||
Stichwörter: | Artificial intelligence (AI), Embedded sensing, precision agriculture, Sensing and control, Smart sensing | ||||||||||||||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||||||||||||||
HGF - Programmthema: | Forschung unter Weltraumbedingungen | ||||||||||||||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||||||||||||||
DLR - Forschungsgebiet: | R FR - Forschung unter Weltraumbedingungen | ||||||||||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Projekt :envihab (alt), R - Vorhaben Biowissenschaftliche Exp.-vorbereitung (alt) | ||||||||||||||||||||||||||||
Standort: | Köln-Porz | ||||||||||||||||||||||||||||
Institute & Einrichtungen: | Institut für Luft- und Raumfahrtmedizin > Gravitationsbiologie | ||||||||||||||||||||||||||||
Hinterlegt von: | Duwe, Helmut | ||||||||||||||||||||||||||||
Hinterlegt am: | 12 Aug 2020 09:51 | ||||||||||||||||||||||||||||
Letzte Änderung: | 12 Aug 2020 09:51 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags