Knopp, Lisa and Wieland, Marc and Rättich, Michaela and Martinis, Sandro (2020) A Deep Learning Approach for Burned Area Segmentation with Sentinel-2 Data. Remote Sensing, 12, pp. 1-22. Multidisciplinary Digital Publishing Institute (MDPI). doi: 10.3390/rs12152422. ISSN 2072-4292.
PDF
- Published version
6MB |
Official URL: https://www.mdpi.com/2072-4292/12/15/2422/pdf
Abstract
Wildfires have major ecological, social and economic consequences. Information about the extent of burned areas is essential to assess these consequences and can be derived from remote sensing data. Over the last years, several methods have been developed to segment burned areas with satellite imagery. However, these methods mostly require extensive preprocessing, while deep learning techniques - which have successfully been applied to other segmentation tasks - have yet to be fully explored. In this work, we combine sensor-specific and methodological developments from the past few years and suggest an automatic processing chain, based on deep learning, for burned area segmentation using mono-temporal Sentinel-2 imagery. In particular, we created a new training and validation dataset, which is used to train a convolutional neural network based on a U-Net architecture. We performed several tests on the input data and reached optimal network performance using the spectral bands of the visual, near infrared and shortwave infrared domains. The final segmentation model achieved an overall accuracy of 0.98 and a kappa coefficient of 0.94.
Item URL in elib: | https://elib.dlr.de/135677/ | ||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Document Type: | Article | ||||||||||||||||||||
Title: | A Deep Learning Approach for Burned Area Segmentation with Sentinel-2 Data | ||||||||||||||||||||
Authors: |
| ||||||||||||||||||||
Date: | 28 July 2020 | ||||||||||||||||||||
Journal or Publication Title: | Remote Sensing | ||||||||||||||||||||
Refereed publication: | Yes | ||||||||||||||||||||
Open Access: | Yes | ||||||||||||||||||||
Gold Open Access: | Yes | ||||||||||||||||||||
In SCOPUS: | Yes | ||||||||||||||||||||
In ISI Web of Science: | Yes | ||||||||||||||||||||
Volume: | 12 | ||||||||||||||||||||
DOI: | 10.3390/rs12152422 | ||||||||||||||||||||
Page Range: | pp. 1-22 | ||||||||||||||||||||
Publisher: | Multidisciplinary Digital Publishing Institute (MDPI) | ||||||||||||||||||||
ISSN: | 2072-4292 | ||||||||||||||||||||
Status: | Published | ||||||||||||||||||||
Keywords: | burned areas; deep learning; Sentinel-2; segmentation; rapid mapping | ||||||||||||||||||||
HGF - Research field: | Aeronautics, Space and Transport | ||||||||||||||||||||
HGF - Program: | Space | ||||||||||||||||||||
HGF - Program Themes: | Earth Observation | ||||||||||||||||||||
DLR - Research area: | Raumfahrt | ||||||||||||||||||||
DLR - Program: | R EO - Earth Observation | ||||||||||||||||||||
DLR - Research theme (Project): | R - Remote Sensing and Geo Research | ||||||||||||||||||||
Location: | Oberpfaffenhofen | ||||||||||||||||||||
Institutes and Institutions: | German Remote Sensing Data Center > Geo Risks and Civil Security | ||||||||||||||||||||
Deposited By: | Knopp, Lisa | ||||||||||||||||||||
Deposited On: | 14 Sep 2020 09:41 | ||||||||||||||||||||
Last Modified: | 25 Oct 2023 08:35 |
Repository Staff Only: item control page