Knopp, Lisa und Wieland, Marc und Rättich, Michaela und Martinis, Sandro (2020) A Deep Learning Approach for Burned Area Segmentation with Sentinel-2 Data. Remote Sensing, 12, Seiten 1-22. Multidisciplinary Digital Publishing Institute (MDPI). doi: 10.3390/rs12152422. ISSN 2072-4292.
PDF
- Verlagsversion (veröffentlichte Fassung)
6MB |
Offizielle URL: https://www.mdpi.com/2072-4292/12/15/2422/pdf
Kurzfassung
Wildfires have major ecological, social and economic consequences. Information about the extent of burned areas is essential to assess these consequences and can be derived from remote sensing data. Over the last years, several methods have been developed to segment burned areas with satellite imagery. However, these methods mostly require extensive preprocessing, while deep learning techniques - which have successfully been applied to other segmentation tasks - have yet to be fully explored. In this work, we combine sensor-specific and methodological developments from the past few years and suggest an automatic processing chain, based on deep learning, for burned area segmentation using mono-temporal Sentinel-2 imagery. In particular, we created a new training and validation dataset, which is used to train a convolutional neural network based on a U-Net architecture. We performed several tests on the input data and reached optimal network performance using the spectral bands of the visual, near infrared and shortwave infrared domains. The final segmentation model achieved an overall accuracy of 0.98 and a kappa coefficient of 0.94.
elib-URL des Eintrags: | https://elib.dlr.de/135677/ | ||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Zeitschriftenbeitrag | ||||||||||||||||||||
Titel: | A Deep Learning Approach for Burned Area Segmentation with Sentinel-2 Data | ||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||
Datum: | 28 Juli 2020 | ||||||||||||||||||||
Erschienen in: | Remote Sensing | ||||||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||||||
Open Access: | Ja | ||||||||||||||||||||
Gold Open Access: | Ja | ||||||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||||||
In ISI Web of Science: | Ja | ||||||||||||||||||||
Band: | 12 | ||||||||||||||||||||
DOI: | 10.3390/rs12152422 | ||||||||||||||||||||
Seitenbereich: | Seiten 1-22 | ||||||||||||||||||||
Verlag: | Multidisciplinary Digital Publishing Institute (MDPI) | ||||||||||||||||||||
ISSN: | 2072-4292 | ||||||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||||||
Stichwörter: | burned areas; deep learning; Sentinel-2; segmentation; rapid mapping | ||||||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||||||
HGF - Programmthema: | Erdbeobachtung | ||||||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||||||
DLR - Forschungsgebiet: | R EO - Erdbeobachtung | ||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Fernerkundung u. Geoforschung | ||||||||||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||||||||||
Institute & Einrichtungen: | Deutsches Fernerkundungsdatenzentrum > Georisiken und zivile Sicherheit | ||||||||||||||||||||
Hinterlegt von: | Knopp, Lisa | ||||||||||||||||||||
Hinterlegt am: | 14 Sep 2020 09:41 | ||||||||||||||||||||
Letzte Änderung: | 25 Okt 2023 08:35 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags