Sundermeyer, Martin und Durner, Maximilian und Puang, En Yen und Marton, Zoltan-Csaba und Vaskevicius, Narunas und Kai, O. Arras und Triebel, Rudolph (2020) Multi-Path Learning for Object Pose Estimation Across Domains. In: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2020, Seiten 13916-13925. IEEE. IEEE Conference on Computer Vision and Pattern Recognition, 2020-06-14 - 2020-06-19, Seattle, USA. doi: 10.1109/CVPR42600.2020.01393. ISBN 978-172817168-5. ISSN 1063-6919.
PDF
2MB |
Kurzfassung
We introduce a scalable approach for object pose estima-tion trained on simulated RGB views of multiple 3D modelstogether. We learn an encoding of object views that doesnot only describe an implicit orientation of all objects seenduring training, but can also relate views of untrained ob-jects. Our single-encoder-multi-decoder network is trainedusing a technique we denote multi-path learning: Whilethe encoder is shared by all objects, each decoder only re-constructs views of a single object. Consequently, viewsof different instances do not have to be separated in thelatent space and can share common features. The result-ing encoder generalizes well from synthetic to real dataand across various instances, categories, model types anddatasets. We systematically investigate the learned encod-ings, their generalization, and iterative refinement strate-gies on the ModelNet40 and T-LESS dataset. Despite train-ing jointly on multiple objects, our 6D Object Detectionpipeline achieves state-of-the-art results on T-LESS at muchlower runtimes than competing approaches.
elib-URL des Eintrags: | https://elib.dlr.de/135550/ | ||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Konferenzbeitrag (Poster) | ||||||||||||||||||||||||||||||||
Titel: | Multi-Path Learning for Object Pose Estimation Across Domains | ||||||||||||||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||||||||||||||
Datum: | Juni 2020 | ||||||||||||||||||||||||||||||||
Erschienen in: | 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2020 | ||||||||||||||||||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||||||||||||||||||
Open Access: | Ja | ||||||||||||||||||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||||||||||||||||||
In ISI Web of Science: | Ja | ||||||||||||||||||||||||||||||||
DOI: | 10.1109/CVPR42600.2020.01393 | ||||||||||||||||||||||||||||||||
Seitenbereich: | Seiten 13916-13925 | ||||||||||||||||||||||||||||||||
Verlag: | IEEE | ||||||||||||||||||||||||||||||||
ISSN: | 1063-6919 | ||||||||||||||||||||||||||||||||
ISBN: | 978-172817168-5 | ||||||||||||||||||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||||||||||||||||||
Stichwörter: | Object Pose Estimation, Encodings, Multi Object, Synthetic Data, Symmetries, Autoencoder, Embedding, 6D Object Detection, T-LESS, Relative Pose Estimation | ||||||||||||||||||||||||||||||||
Veranstaltungstitel: | IEEE Conference on Computer Vision and Pattern Recognition | ||||||||||||||||||||||||||||||||
Veranstaltungsort: | Seattle, USA | ||||||||||||||||||||||||||||||||
Veranstaltungsart: | internationale Konferenz | ||||||||||||||||||||||||||||||||
Veranstaltungsbeginn: | 14 Juni 2020 | ||||||||||||||||||||||||||||||||
Veranstaltungsende: | 19 Juni 2020 | ||||||||||||||||||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||||||||||||||||||
HGF - Programmthema: | Technik für Raumfahrtsysteme | ||||||||||||||||||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||||||||||||||||||
DLR - Forschungsgebiet: | R SY - Technik für Raumfahrtsysteme | ||||||||||||||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Vorhaben Multisensorielle Weltmodellierung (alt) | ||||||||||||||||||||||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||||||||||||||||||||||
Institute & Einrichtungen: | Institut für Robotik und Mechatronik (ab 2013) > Perzeption und Kognition | ||||||||||||||||||||||||||||||||
Hinterlegt von: | Sundermeyer, Martin | ||||||||||||||||||||||||||||||||
Hinterlegt am: | 22 Jul 2020 18:48 | ||||||||||||||||||||||||||||||||
Letzte Änderung: | 04 Jun 2024 15:06 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags