Hong, Danfeng und Yao, Jing und Wu, Xin und Chanussot, Jocelyn und Zhu, Xiao Xiang (2020) Spatial-Spectral Manifold Embedding of Hyperspectral Data. In: The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLIII, Seiten 1-6. 24th ISPRS Congress, 2020-08-31 - 2020-09-02, Nice, France. doi: 10.5194/isprs-archives-xliii-b3-2020-423-2020. ISSN 1682-1750.
PDF
257kB |
Offizielle URL: https://www.int-arch-photogramm-remote-sens-spatial-inf-sci.net/XLIII-B3-2020/423/2020/
Kurzfassung
In recent years, hyperspectral imaging, also known as imaging spectroscopy, has been paid an increasing interest in geoscience and remote sensing community. Hyperspectral imagery is characterized by very rich spectral information, which enables us to recognize the materials of interest lying on the surface of the Earth more easier. We have to admit, however, that high spectral dimension inevitably brings some drawbacks, such as expensive data storage and transmission, information redundancy, etc. Therefore, to reduce the spectral dimensionality effectively and learn more discriminative spectral low-dimensional embedding, in this paper we propose a novel hyperspectral embedding approach by simultaneously considering spatial and spectral information, called spatialspectral manifold embedding (SSME). Beyond the pixel-wise spectral embedding approaches, SSME models the spatial and spectral information jointly in a patch-based fashion. SSME not only learns the spectral embedding by using the adjacency matrix obtained by similarity measurement between spectral signatures, but also models the spatial neighbours of a target pixel in hyperspectral scene by sharing the same weights (or edges) in the process of learning embedding. Classification is explored as a potential strategy to quantitatively evaluate the performance of learned embedding representations. Classification is explored as a potential application for quantitatively evaluating the performance of these hyperspectral embedding algorithms. Extensive experiments conducted on the widely-used hyperspectral datasets demonstrate the superiority and effectiveness of the proposed SSME as compared to several state-of-the-art embedding methods.
elib-URL des Eintrags: | https://elib.dlr.de/135533/ | ||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Konferenzbeitrag (Poster) | ||||||||||||||||||||||||
Titel: | Spatial-Spectral Manifold Embedding of Hyperspectral Data | ||||||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||||||
Datum: | September 2020 | ||||||||||||||||||||||||
Erschienen in: | The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences | ||||||||||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||||||||||
Open Access: | Ja | ||||||||||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||||||||||
In ISI Web of Science: | Nein | ||||||||||||||||||||||||
Band: | XLIII | ||||||||||||||||||||||||
DOI: | 10.5194/isprs-archives-xliii-b3-2020-423-2020 | ||||||||||||||||||||||||
Seitenbereich: | Seiten 1-6 | ||||||||||||||||||||||||
ISSN: | 1682-1750 | ||||||||||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||||||||||
Stichwörter: | hyperspectral, embedding, spatialspectral manifold embedding, patch-based, classification | ||||||||||||||||||||||||
Veranstaltungstitel: | 24th ISPRS Congress | ||||||||||||||||||||||||
Veranstaltungsort: | Nice, France | ||||||||||||||||||||||||
Veranstaltungsart: | internationale Konferenz | ||||||||||||||||||||||||
Veranstaltungsbeginn: | 31 August 2020 | ||||||||||||||||||||||||
Veranstaltungsende: | 2 September 2020 | ||||||||||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||||||||||
HGF - Programmthema: | Erdbeobachtung | ||||||||||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||||||||||
DLR - Forschungsgebiet: | R EO - Erdbeobachtung | ||||||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Vorhaben hochauflösende Fernerkundungsverfahren (alt) | ||||||||||||||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||||||||||||||
Institute & Einrichtungen: | Institut für Methodik der Fernerkundung > EO Data Science | ||||||||||||||||||||||||
Hinterlegt von: | Yao, Jing | ||||||||||||||||||||||||
Hinterlegt am: | 20 Jul 2020 12:50 | ||||||||||||||||||||||||
Letzte Änderung: | 24 Apr 2024 20:38 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags