Mast, Johannes and Wei, Chunzhu and Wurm, Michael (2020) Mapping urban villages using fully convolutional neural networks. Remote Sensing Letters, 11 (7), pp. 630-639. Informa Ltd. doi: 10.1080/2150704X.2020.1746857. ISSN 2150-704X.
PDF
- Postprint version (accepted manuscript)
1MB |
Official URL: https://www.tandfonline.com/doi/full/10.1080/2150704X.2020.1746857
Abstract
Urban villages are a characteristic settlement type characterized by preserving their morphological characteristics embedded in sharp contrast in modern, high-rise developments found especially in fast growing urban agglomerations of China. They serve very important socioeconomic functions in terms of the provision of cheap housing for rural-urban migrants, but they are also considered controversial for local governments. Due to the unprecedented pace of urban growth, especially in the Pearl River Delta region (PRD), up-to-date information on the size and location of urban villages are mostly missing. Large-area but highly detailed data from earth observation platforms can provide crucial information for mapping urban villages based on their characteristic morphologies. This study deploys fully convolutional neural networks for mapping urban villages in the city of Shenzhen. Results of the underlying experiments show that very high mapping accuracies of 84% can be achieved.
Item URL in elib: | https://elib.dlr.de/135349/ | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Document Type: | Article | ||||||||||||||||
Title: | Mapping urban villages using fully convolutional neural networks | ||||||||||||||||
Authors: |
| ||||||||||||||||
Date: | 27 May 2020 | ||||||||||||||||
Journal or Publication Title: | Remote Sensing Letters | ||||||||||||||||
Refereed publication: | Yes | ||||||||||||||||
Open Access: | Yes | ||||||||||||||||
Gold Open Access: | No | ||||||||||||||||
In SCOPUS: | Yes | ||||||||||||||||
In ISI Web of Science: | Yes | ||||||||||||||||
Volume: | 11 | ||||||||||||||||
DOI: | 10.1080/2150704X.2020.1746857 | ||||||||||||||||
Page Range: | pp. 630-639 | ||||||||||||||||
Publisher: | Informa Ltd | ||||||||||||||||
ISSN: | 2150-704X | ||||||||||||||||
Status: | Published | ||||||||||||||||
Keywords: | urban villages, slums, deep learning | ||||||||||||||||
HGF - Research field: | Aeronautics, Space and Transport | ||||||||||||||||
HGF - Program: | Space | ||||||||||||||||
HGF - Program Themes: | Earth Observation | ||||||||||||||||
DLR - Research area: | Raumfahrt | ||||||||||||||||
DLR - Program: | R EO - Earth Observation | ||||||||||||||||
DLR - Research theme (Project): | R - Remote Sensing and Geo Research | ||||||||||||||||
Location: | Oberpfaffenhofen | ||||||||||||||||
Institutes and Institutions: | German Remote Sensing Data Center > Geo Risks and Civil Security | ||||||||||||||||
Deposited By: | Wurm, Michael | ||||||||||||||||
Deposited On: | 21 Jul 2020 11:05 | ||||||||||||||||
Last Modified: | 04 Dec 2023 15:36 |
Repository Staff Only: item control page