elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

A pragmatic approach for a 3D material model considering elasto-plastic behaviour, damage initiation by Puck or Cuntze and progressive failure of fibre-reinforced plastics

Völkerink, Oliver und Petersen, Enno und Koord, Josef und Hühne, Christian (2020) A pragmatic approach for a 3D material model considering elasto-plastic behaviour, damage initiation by Puck or Cuntze and progressive failure of fibre-reinforced plastics. Computers & Structures, 236 (106280). Elsevier. doi: 10.1016/j.compstruc.2020.106280. ISSN 0045-7949.

[img] PDF - Postprintversion (akzeptierte Manuskriptversion)
1MB

Offizielle URL: http://www.sciencedirect.com/science/article/pii/S0045794920300833

Kurzfassung

Fibre reinforced plastics with tough epoxy and thermoplastic matrices are spreading increasingly in many lightweight applications. For an efficient and reliable design the mechanical behaviour, considering non-linear plasticity, various failure modes under complex loading and damage progression, has to be estimated with numerical simulations. Most state-of-the-art continuum damage mechanics models do not consider the non-linear behaviour of the matrix material or are not suited for 3D solid elements. This work proposes a combined 3D continuum damage/plasticity model. It uses a single parameter flow criterion in combination with Cuntze’s Failure Mode Concept (FMC) for intralaminar failure. The FMC requires no iterative fracture angle search as the Action Plane Strength Criterion by Puck (APSC). This work describes details of the developed model like the coupling of the FMC with a degradation model as well as the implementation into Abaqus/Standard. A validation against open-hole tension tests made out of AS4/PEEK from literature is performed. It can be shown that the prediction of experimental failure loads with the FMC as well as with the APSC provides comparable results. The maximum deviations are between -7.85% and +12.85%. However, the computation times for predictions with the FMC are significantly less than with the APSC.

elib-URL des Eintrags:https://elib.dlr.de/135247/
Dokumentart:Zeitschriftenbeitrag
Titel:A pragmatic approach for a 3D material model considering elasto-plastic behaviour, damage initiation by Puck or Cuntze and progressive failure of fibre-reinforced plastics
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Völkerink, Oliveroliver.voelkerink (at) dlr.dehttps://orcid.org/0000-0002-9589-1963NICHT SPEZIFIZIERT
Petersen, Ennoenno.petersen (at) dlr.dehttps://orcid.org/0000-0002-1488-5618NICHT SPEZIFIZIERT
Koord, JosefJosef.Koord (at) dlr.dehttps://orcid.org/0000-0002-2749-1546NICHT SPEZIFIZIERT
Hühne, ChristianChristian.Huehne (at) dlr.dehttps://orcid.org/0000-0002-2218-1223NICHT SPEZIFIZIERT
Datum:19 Mai 2020
Erschienen in:Computers & Structures
Referierte Publikation:Ja
Open Access:Ja
Gold Open Access:Nein
In SCOPUS:Ja
In ISI Web of Science:Ja
Band:236
DOI:10.1016/j.compstruc.2020.106280
Verlag:Elsevier
ISSN:0045-7949
Status:veröffentlicht
Stichwörter:Damage mechanics, Finite element analysis (FEA), Failure criterion, Non-linear behaviour, Plastic deformation, Fibre reinforced plastics
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Luftfahrt
HGF - Programmthema:Flugzeuge
DLR - Schwerpunkt:Luftfahrt
DLR - Forschungsgebiet:L AR - Aircraft Research
DLR - Teilgebiet (Projekt, Vorhaben):L - Simulation und Validierung (alt), L - Strukturen und Werkstoffe (alt)
Standort: Braunschweig
Institute & Einrichtungen:Institut für Faserverbundleichtbau und Adaptronik > Funktionsleichtbau
Hinterlegt von: Völkerink, Dr. Oliver
Hinterlegt am:21 Jun 2020 16:53
Letzte Änderung:23 Okt 2023 13:27

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.