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Abstract

Fibre reinforced plastics with tough epoxy and thermoplastic matrices are spread-

ing increasingly in many lightweight applications. For an efficient and reliable

design the mechanical behaviour, considering non-linear plasticity, various fail-

ure modes under complex loading and damage progression, has to be estimated

with numerical simulations. Most state-of-the-art continuum damage models do

not consider the non-linear behaviour of the matrix material or are not suited

for 3D solid elements. This work proposes a combined 3D continuum damage /

plasticity model. It uses a single parameter flow criterion in combination with

Cuntze’s Failure Mode Concept (FMC) for intralaminar failure. The FMC re-

quires no iterative fracture angle search as the Action Plane Strength Criterion

by Puck (APSC). This work describes details of the developed model like the

coupling of the FMC with a degradation model as well as the implementation

into Abaqus / Standard. A validation against open-hole tension tests made

out of AS4/PEEK from literature is performed. It can be shown that the pre-

diction of experimental failure loads with the FMC as well as with the APSC

provides comparable results. The maximum deviations are between −7.85%

∗Corresponding author
Email address: oliver.voelkerink@dlr.de (O. Völkerink)

Preprint submitted to Computers & Structures April 24, 2020



and +12.85%. However, the computation times for predictions with the FMC

are significantly less than with the APSC.

Keywords: Damage mechanics, Finite element analysis (FEA), Failure

criterion, Non-linear behaviour, Plastic deformation, Fibre reinforced plastics

1. Introduction

The numerical prediction of strength and fracture behaviour is one of the

most important factors for progress in the design of structures made of lami-

nated fibre reinforced plastics (FRP). Due to the ability to tailor the mechanical

properties such as stiffness and strength as well as a good fatigue resistance,5

these laminated composite materials are for instance widespread in the civil en-

gineering, automotive, aerospace and ship building industry. Reliable numerical

failure analyses are needed in the design of composite structures to support or

even replace experimental tests. In this way, the cost- and time-intensive test-

ing effort can be significantly reduced and the development process additionally10

accelerated.

Analysis approaches used in this context often assume laminate failure at first

ply failure. This leads to a very conservative design since fibre composite struc-

tures can carry further loads after initial damage [1]. In order to achieve an

efficient and reliable design of structures the mechanical behaviour up to total15

failure has to be estimated in the design phase with numerical simulations. This

includes the consideration of damage initiation by various failure modes under

complex loading as well as damage progression.

Most of the constitutive models consider composites on the mesoscale, i.e. ply

by ply. Like the material model described in this work, these models are based20

on Continuum Damage Mechanics (CDM). The models are usually divided into

three parts: A model for the mechanical behaviour prior to damage initiation, a

failure criterion to be able to detect damage initiation and a description of the

mechanical behaviour in the postfailure regime [2]. Many CDM-based models

for composites have been developed in the past [3]. In order to give a brief25
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overview a few selected models are discussed below.

Simple progressive damage models combine a linear-elastic constitutive formu-

lation with a set of failure criteria for the different intralaminar failure types

and a constant stiffness degradation, also called sudden degradation, after fail-

ure initiation [4, 5, 6]. A representative of this model class, in this case with the30

failure criterion of Hashin [7], is used by Hühne et al. [8] to perform progressive

damage analyses of composite bolted joints. However, the majority of models

use gradual degradation models [9, 10, 11]. These degradation models describe

the decrease in stiffness due to damage as a linear or exponential function, which

depends on the corresponding critical energy release rate. The main difference35

between the investigated models is the set of failure criteria used to detect fail-

ure initiation and whether they are formulated for the plane stress state or for

the three-dimensional case. In the models mentioned above for example the fail-

ure criteria of Puck [12], the Tsai-Wu [13] or the LaRC03-04 criterion [14] are

used. All of the previously mentioned models assume linear-elastic mechanical40

behaviour prior to damage initiation.

In contrast, several experimental findings reported in literature [15, 16, 17, 18],

show a non-linearity prior to discrete damage such as fibre and interfibre failure

or delaminations. This non-linearity originates from plasticity of the matrix

material, fibre rotation and microcracks, what is often described as pseudo-45

plasticity. For example Wang and Callus [15] observed a hyperbolic in-plane

shear stress-strain relation in AS4/3501-6 [±45◦]4s specimens tested under ten-

sile loading. Van Paepegem et al. [16] tested specimens, made from Roviglas

R17/475 glass fibre and Araldite LY 556 epoxy with a [±45◦]2s layup, in a cyclic

tensile loading process and found permanent deformations after unloading. Sim-50

ilar irreversible strains were observed by Lafarie-Frenot and Touchard [17] when

they tested [±45◦]2s-specimens made from two different materials. One mate-

rial was a thermoplastic fibre composite made from AS4/PEEK and the other

material was a thermoset fibre composite made from T300/914. In addition,

Vogler and Kyriakides [18] describe a non-linear stress-strain relationship in55

AS4/PEEK composite specimens loaded in shear, transverse compression and
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in an interaction of both loading cases.

These experimental findings show that the assumptions of a linear-elastic be-

haviour prior to damage is not valid for many FRP composite materials. For

this reason, a material model is required that also takes this non-linearity prior60

to damage initiation into account. Lüders et al. [19] developed a model for fa-

tigue lifetime predictions using the three-dimensional failure criterion by Puck

which considers pre-failure non-linearities of the matrix. The non-linear relation

between the shear stress τ and the shear strain γ is defined by an exponential

function. A similar approach to describe the non-linear behaviour in shear is65

used by Donadon et al. [20], but instead of an exponential a polynomial cubic

stress-strain relationship was applied. However, both models only consider a

non-linearity prior to damage initiation for the shear components. A model

with a different approach for the modelling of plasticity is described by Ernst

et al. [21]. In their multiscale approach the plasticity is modelled on the mi-70

cromechanical scale, where the behaviour of fibre and matrix is described with

different material models. For the matrix an isotropic plastic flow potential de-

pending on the first two stress invariants is used. The non-linear stress-strain

relationships are then applied in meso- and macromechanical analyses. Vogler

et al. [22] use a non-associated flow rule to account for the pre-failure non-75

linearities. However, six yield surface parameters and three plastic potential

parameters are necessary for the model to describe the material behaviour.

In contrast, a transversally isotropic plasticity model with an associative flow

rule was introduced by Sun and Chen [23]. The composite material is assumed

to be linear-elastic in fibre direction. Only one coefficient is needed to describe80

the anisotropy in the plasticity. In total only three parameters are necessary.

Due to its simplicity, this model was used by Chen et al. [2] and Din et al. [24]

in combination with Hashin’s and Puck’s failure criterion respectively. Both

models showed good results in the validation, but assume a plane-stress state

and can therefore only be used with shell elements. Some authors report that85

the consideration of the general three-dimensional stress state increases the pre-

diction accuracy [10, 25]. To add, as shown in [26], the failure criterion of Hashin
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does not describe the matrix damage with high accuracy. This is underlined by

the second World-Wide Failure Exercise (WWFE-II), which showed that the

failure criteria of Puck and Cuntze are able to describe those failure modes with90

higher accuracy [27] than the theory of Hashin. For this reason Din et al. [24]

use Puck in combination with the one parameter plasticity model of Sun and

Chen. However, the FMC of Cuntze [28] has the advantage over Puck [12] that

no computational expensive iterative fracture angle search is needed for interfi-

bre failure.95

The provision of a material model, unlike [2] and [24], for the general three-

dimensional case with the plasticity model of Sun and Chen in combination

with Cuntze’s less computational-intensive failure criterion is the motivation

for the present work.

2. The 3D anisotropic damage / plasticity coupled constitutive model100

The proposed material model can be divided into four components: Linear-

elastic behaviour (1), plastic behaviour (2), damage initiation (3) and damage

progression (4). These components are illustrated in the stress-strain plot in

Fig. 1.
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Figure 1: Stress-strain curve showing individual components of the proposed material model

The following section, which briefly describes the theories behind the indi-105

vidual components, is structured on the basis of this division.
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2.1. Effective stress and damage operator

The material model developed in this work will be used to analyse macro-

scopic structures. For this reason, no discrete damage is modelled in the indi-

vidual ply of the composite, but the approach of smeared damage according to110

Kachanov [29] is used. Under the assumption that the damage in the area under

consideration is isotropic, it is assumed that the area available for the transfer

of loads Aeff decreases in comparison with the undamaged area A0. With this

consideration an effective stress σ̃ = P/Aeff can now be defined to substitute

the nominal stress σ = P/A0. When damage has occured, the effective stress σ̃115

is higher than the nominal stress σ at constant load P .

In accordance with the smeared damage of Kachanov [29], Matzenmiller et al.

[30] describe a damage model for an orthotropic single ply, which is used in this

work. A damage operator M (d) is defined, which establishes the relationship

between the effective and the nominal stress:120

σ̃ = M (d) · σ (2.1)

The damage operator or lamina damage tensor used in this work is con-

structed as follows:

M (d) = diag

[
1

1− df
;

1

1− dm
;

1

1− dm
;

1

1− ds
;

1

1− ds
;

1

1− dm

]
(2.2)

In this case df is the damage variable associated with fibre failure. The

damage variables dm and ds are associated with matrix failure under transverse

respectively shear loading. These scalar damage variables take values between 0125

and 1, where 0 represents the undamaged and 1 the completely damaged state.

In the implementation the values for d are limited to 0.99 in order to avoid divi-

sion by zero. In addition, the damage variables df and dm distinguish between

damage from tensile and compressive stresses. The following relationships are
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used to determine a smeared damage variable from the two loading types:130

df = dft + dfc − dft · dfc (2.3)

dm = dmt + dmc − dmt · dmc (2.4)

A detailed derivation of equations 2.3 and 2.4 can be found in [10]. Due to

the plasticity in the composite material the total strain tensor ε results in the

sum of the elastic strain tensor εe and the plastic strain tensor εp:

ε = εe + εp (2.5)

The stress-strain relationship for the effective and the nominal stress ten-

sor can be described according to the CDM theory and are suitable for a135

displacement-based Finite Element (FE) approach as follows:

σ̃ = C 0 · εe; σ = M (d)−1 ·C 0 · εe (2.6)

2.2. Plasticity model

Like mentioned above, the plastic strain εp represents all irreversible de-

formations. The portion of plastic strain in the total strain and the stress

corrected for plasticity are determined using a transversally isotropic plasticity140

model with an associative flow rule. Sun and Chen describe a plastic potential

for anisotropic fibre composite materials [23]. Under the assumption of trans-

verse isotropy in the 2-3 plane and linear-elastic behaviour in fibre direction

dεp11 = 0, the plastic potential f for the three-dimensional case results to [31]:

f(σij) =
1

2

[
(σ22 − σ33)2 + 4τ2

23 + 2a(τ2
13 + τ2

12)
]

(2.7)

The parameter a in Eq. 2.7 weights the in-plane shear behaviour. This145

plastic potential was established based on the observation of Sun and Chen [23]

on micromechanical models that only hydrostatic stresses cause plastic defor-

mation. Eq. 2.8 describes the comparison between the yield limit σ̄y(p̃) and
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the effective stress σ̄ =
√

3f in order to distinguish between the elastic and the

plastic domain:150

f(σ̃, p̃) =
√

3f − σ̄y(p̃) ≤ 0 (2.8)

The plastic potential can also be expressed in matrix/vector notation using

the mapping matrix P , cf. [32], which is used in the user defined material model

(UMAT) implementation in this publication:

F (σ̃, p̃) =
1

2
σ̃T : P : σ̃ − σ̄2

y(p̃) (2.9)

For the plastic potential in Eq. 2.7, the mapping matrix P reads:

P =



0 0 0 0 0 0

3 −3 0 0 0

3 0 0 0

6a 0 0

sym. 6a 0

12


(2.10)

Taking into account the associated flow rule, the incremental plastic strain155

components can be expressed in terms of the plastic potential f where dλ is the

plastic multiplier:

dεpij =
∂f

∂σij
dλ (2.11)

From eq. 2.11 it can be seen that plastic strains are considered in all compo-

nents except the fibre direction. As stated by Weeks and Sun [31], experiments

have shown that FRP materials with a non-linear behaviour prior to damage,160

like thermoplastic fibre composites, do not have a defined yield point. There-

fore, the yield limit σ̄y(p̃) is a function of the accumulated plastic strain p̃,

which increases with load. Hence the plasticity is completely irreversible. Using

a hardening law exponent α and the coefficient β, the function for the yield
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limit follows to:165

σ̄y(p̃) = β · (p̃)α (2.12)

By combining the models described, the plastic behaviour of a transversally

isotropic material can therefore be described with only three parameters. These

parameters can be determined with off-axis tensile tests as shown in [23], [31]

and [33]. Due to its simplicity the model was adopted from different authors in

their elastoplastic CDM-based models [2, 24, 31] and also finds application in170

this work.

2.3. Damage initiation and propagation using Cuntze’s Failure Mode Concept

In order to predict discrete damage, like fibre- and interfibre failure, at the

ply level, a suitable failure theory has to be incorporated in the model. Within

the framework of the WWFE-II the predictive capabilities of 3D failure criteria175

for FRPs were compared [27]. The WWFE-II identified the FMC by Cuntze

[28] as one of the criteria with a high predictive performance. In addition to

the FMC, the Action Plane Strength Criterion (APSC) originally formulated by

Puck and adapted by Deuschle also shows high capabilities [34, 35]. However,

the APSC requires an additional algorithm to determine the angle of fracture180

respectively the plane of the potential interfibre fracture. Due to this, Cuntze’s

FMC is the main failure theory used in this work and will be briefly discussed

in the following. Puck’s APSC is implemented for comparison and described in

the next section.

The FMC is characterised by the basic idea of separating failure modes. Ac-185

cording to the FMC, a failure mode describes a certain failure mechanism. Each

failure mechanism is covered by an individual failure criterion, which in turn is

associated with only one material strength. For each of the failure modes an

individual material stressing effort Eff is calculated. This stressing effort is de-

fined as the inverse of the stress-based reserve factor fres [36]. The interaction190

of these different modes finally provides the global material stressing effort in

the form of a sum equation [37]. Five different failure modes are distinguished.
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Like the criteria of Hashin [7] or the APSC [35], Cuntze’s FMC also differen-

tiates fibre failure (FF) and interfibre failure (IFF). These modes are further

distinguished according to the state of stress that causes failure. Thus, for FF195

two modes, which originate from tensile (FF1) and compressive (FF2) stresses

exist. Three IFF modes are caused by tension (IFF1), compression (IFF2) and

shear (IFF3) loading. The version of the FMC used in this work is published in

[38]:

FF1 : Eff‖σ = σ‖σeq /R
t
‖ (2.13)

with σ
‖σ
eq = σ1200

FF2 : Eff‖τ = σ‖τeq /R
c
‖ (2.14)

with σ
‖τ
eq = σ1

IFF1 : Eff⊥σ = σ⊥σeq /R
t
⊥ (2.15)

with σ⊥σeq =
[
(σ2 + σ3) +

√
(σ2 + σ3)2 + 4τ2

23

]

IFF2 : Eff⊥τ = σ⊥τeq /R
c
⊥ (2.16)

with σ⊥τeq =
[
b⊥⊥ ·

√
(σ2 + σ3)2 + 4τ2

23 + (b⊥⊥ − 1) · (σ2 + σ3)
]

IFF3 : Eff⊥‖ = σ⊥‖eq /R⊥‖ (2.17)

with

σ
⊥‖
eq /R⊥‖ =

([√
b2⊥‖ · I

2
23−5 + 4 ·R2

⊥‖ · (τ
2
13 + τ2

12)2 + b⊥‖ · I23−5

]
/(2 ·R3

⊥‖)
) 1

2

205

and I23−5 = 2σ2 · τ2
12 + 2σ3 · τ2

13 + 4τ23τ13τ12
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The various failure modes can be combined to form a global criterion for

failure in laminates. The interaction of the individual failure modes to a global

material stressing effort Effm is described with the interaction exponent m.

This parameter m interacts the single failure modes based on probabilistics.210

The global material effort Effm results in:

Effm =

5∑
1

Effmode =

(
σ⊥σeq
Rt⊥

)m
+

(
σ
‖τ
eq

Rc‖

)m
+

(
σ⊥σeq
Rt⊥

)m
+

(
σ⊥τeq
Rc⊥

)m
+

(
σ
⊥‖
eq

R⊥‖

)m
(2.18)

As can be seen from the equations of the individual failure modes, no frac-

ture angle is included because the stress invariants do not change with rotation

or other transformation of the coordinate system. For this reason, the iterative

search for the fracture angle, as it is necessary in the APSC, is not required.215

This increases the computational efficiency of the FMC compared to the APSC.

If the global material stressing effort determined with the FMC reaches 1 at

an integration point, further loading will cause a degradation of the material

stiffnesses. Hence, a gradual damage development is activated at the integra-

tion point under consideration. First, the stiffnesses associated with the failure220

mode, which has the highest single effort, are degraded. As soon as further in-

dividual efforts reach one, the corresponding stiffnesses are also degraded. The

assignment of the failure modes to the stiffnesses can be found in Tab. 1.

Table 1: Assignment of failure modes to damage variables

Failure mode FF1 FF2 IFF1 IFF2 IFF3
Damage variable dft dfc dmt dmc ds

Many degradation models in literature control the damage progression with

the evolution of the failure indices of the damage initiation criteria [2, 9, 10, 11,

24]. Since most failure criteria are stress-based, which is also recommended by

Rohwer [39], the development of damage is also indirectly stress-based. If, as

in this work, the plasticity of the material is taken into account, the maximum

effective stresses, apart from σ̃11, are limited by the yielding of the material.
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This also limits the damage variables. On this account the evolution of the

damage variables is controlled by displacement in this work.

As soon as damage occurs in the fibre composite, the strain is no longer dis-

tributed smoothly, but varies in local areas. Characteristically, the strain incre-

ment is then localised in a small zone due to local damage, while the strain in the

major part of the structure is diminishing [40]. Numerical models to describe

failure behaviour must correctly reflect the energy dissipated in the fracture

process zone. This is not the case in standard FE theory. As shown by Jirásek

[41], the dissipated energy decreases with a refinement of the mesh to very small

values. This results in a strong mesh dependency of the solution. In particular,

smaller element sizes do not necessarily lead to a better converged solution. To

remedy this, the crack band model of Bažant and Oh [42] is used. With this

approach, the computed dissipated energy is regularised using a characteristic

length of the finite element Lc:

gM =
GM
Lc

with M ∈ {ft, fc,mt,mc, s} (2.19)

In this equation GM is the fracture toughness in the mode M and gM is the

dissipated energy per unit volume. As can be seen in sections 4.2 and 4.4.1225

this approach cannot completely resolve the mesh dependency, but significantly

mitigates it and is straightforward to implement. Therefore, it is used in several

other damage descriptions proposed for composites [2, 26] and also in this work.

To this end, the strain-controlled degradation model with crack band approach

from Lapczyk and Hurtado [26] is adapted for use with the FMC. Each damage230

variable is calculated with the following equation:

dM =
δfM,eq(δM,eq − δ0

M,eq)

δM,eq(δ
f
M,eq − δ0

M,eq)
with δ0

M,eq ≤ δM,eq ≤ δfM,eq (2.20)

The equivalent strain δ0
M,eq describes the initiation of damage with the re-

lationship:

δ0
M,eq =

ε0
M

Lc
(2.21)
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Where Lc is the characteristic element length of the element under consideration.

The equivalent strain at total failure δfM,eq which corresponds to dM = 1 is

calculated with:

δfM,eq =
2GM
σ0
MLc

(2.22)

The stresses and strains at damage initiation (σ0
M and ε0

M ) are not known

a priori in Cuntze’s FMC. Therefore, these measures are saved in the material

routine during runtime when damage is initiated. In the interfibre failure modes

damage can be caused by multiple stress components. In this case the compo-235

nent with the highest stress is used to control the degradation.

2.4. Damage initiation and propagation using Puck’s Action Plane Strength Cri-

terion

A version of the proposed material model with Puck‘s failure theory is used to240

compare it to Cuntze’s FMC. At this point the theory of Puck will be discussed

only briefly. For detailed information see [12] and [43]. In this work the theory

described in VDI 2014 [44] is adopted. In Puck’s APSC two stressing efforts

are calculated. One effort for fibre failure fE(FF ) and one for interfibre failure

fE(IFF ). Taking into account the strength in fibre direction in tension Rt‖ and245

compression Rc‖, the former is calculated with the following equations:

fE(FF ) =
σ̃11

Rt‖
(2.23)

fE(FF ) =
σ̃11

−Rc‖
(2.24)

The equations providing the stressing effort for interfibre failure fE(IFF )

require stresses transformed to the action plane as an input. The orientation

of the action plane, in other words the fracture angle Θ, is not known a priori.

For this reason, fracture angles from −90◦ to +90◦ are iterated in 1◦ steps in250

the present implementation. The actual fracture plane is characterised by the
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highest stressing effort. For further calculations, the angle Θ that results in the

highest stressing effort as well as the corresponding effort fE(IFF )(Θ) is used.

The equations for fE(IFF ) are the following:

fE(IFF )(Θ) =

√[(
1

Rt⊥
−
pt⊥Ψ

RA⊥Ψ

)
σn

]2

+

(
τnt
RA⊥⊥

)2

+

(
τn1

R⊥‖

)2

+
pt⊥Ψ

RA⊥Ψ

σn

(2.25)

fE(IFF )(Θ) =

√(
τnt
RA⊥⊥

)2

+

(
τn1

R⊥‖

)2

+

(
pc⊥Ψ

RA⊥Ψ

σn

)2

+
pc⊥Ψ

RA⊥Ψ

σn (2.26)

For tensile stresses normal to the action plane the former equation is evalu-

ated and otherwise the latter. The variables used are defined as follows:255

pt⊥Ψ

RA⊥Ψ

=
pt⊥⊥
RA⊥⊥

cos2Ψ +
pt⊥‖

R⊥‖
sin2Ψ (2.27)

pc⊥Ψ

RA⊥Ψ

=
pc⊥⊥
RA⊥⊥

cos2Ψ +
pc⊥‖

R⊥‖
sin2Ψ (2.28)

cos2Ψ = 1− sin2Ψ =
τ2
nt

τ2
nt + τ2

n1

(2.29)

RA⊥⊥ =
Rc⊥

2(1 + pc⊥⊥)

(2.30)

The variables pt⊥‖, p
c
⊥‖, p

t
⊥⊥ and pc⊥⊥ contained in these equations are in-

clination parameters of the master fracture body in the (σn, τnt, τn1)-space and

the variable RA⊥⊥ is parallel to fibre strength on the action plane against fracture

due to τ⊥⊥ stresses.

In this way the fracture angle and the stresses transformed to the fracture plane260

are obtained in addition to the material stressing effort. Unlike Cuntze’s FMC,

Puck’s APSC does not differentiate directly between interfibre failures due to

tensile, compressive and shear loads. For this reason, a methodology is required

to define the portion of the interfibre failure modes. Deuschle [32] formulated

an orientation impact degradation measure n considering the computed frac-265
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ture angle Θ and an angle of a most direct impact Θmd for the mode under

consideration:

n =

[
1− nmin

2
· cos[2(Θ−Θmd)]

]
+

1

2
+

1

2
nmin (2.31)

In this equation n can take values between 0 and 1. The parameter nmin

controls the least impact. Since no experimental results are available, the value

is set to zero as proposed in the work of Deuschle [43]. Tab. 2 shows the values270

for Θmd for the different components:

Table 2: Angles of most direct impact on the stiffness components

Θmd E22 E33 G12 G13 G23

ni 0◦ 90◦ � � �

n+
ij � � 0◦ 90◦ +45◦

n−ij � � 0◦ 90◦ −45◦

In the first step, a general damage variable for interfibre failure dIFF con-

trolled by the largest strain component is calculated. This general damage

variable is then used to calculate the individual damage variables taking the

orientation impact degradation measure into account:275

di = ni · dIFF (2.32)

dij = n+
ij · dIFF + n−ij · dIFF − n

+
ij · dIFF · n

−
ij · dIFF (2.33)

The other parts of the degradation model work as described for the FMC in

section 2.3.

3. Numerical implementation

The suggested elastoplastic material model has been implemented in Abaqus

/ Standard as UMAT. The following section describes the implementation of280

the algorithms for updating the Cauchy nominal stresses, the state variables as
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well as the consistent tangent stiffness matrix. Both the implementation and

the verification are shown considering the version of the material model with

Cuntze’s FMC.

3.1. Computational procedure285

At the beginning of each increment the values εen, εpn, ∆ε, p̃n, σn of the previ-

ous increment n are retrieved. Then the effective stress σ̃ at the time increment

n is calculated with Eq. 2.1. With this information an elastic predictor consist-

ing out of a trial strain εtrialn+1 and a trial stress σtrialn+1 is determined. The trial

stress is then used to check the yield criterion F , cf. Eq. 2.8. If the increment is290

elastic, the stresses and strains at time n+1 will be updated with the quantities

of the elastic predictor. Otherwise, the actual effective stress vector σ̃n+1 and

the scalar valued accumulated plastic strain have to be found for the current

increment. For this purpose, the effective stress vector σ̃n+1 is expressed as a

function of the trial stress vector σ̃trialn+1 :295

σ̃n+1 = (I + ∆λDe ·M ·P)−1 · σ̃trialn+1 (3.1)

In this equation I is the identity matrix, ∆λ is the plastic multiplier and De

is the elastic compliance matrix. The equivalent plastic strain of the increment

n+ 1 can be determined with the following equation:

p̃n+1 = p̃n + ∆λ
√

(P · σ̃n+1)T : Z : (P · σ̃n+1) (3.2)

Where Z is the mapping matrix:

Z =



0 0 0 0 0 0

2
3 − 1

6 0 0 0

2
3 0 0 0

1
3a 0 0

sym. 1
3a 0

1
6


(3.3)
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A return mapping algorithm (RMA) is utilised to determine the only un-300

known variable in these equations ∆λ. The RMA used in this work is described

in [32] and was adapted by Din et al. [24] for the plastic potential as used by

Sun and Chen [23]. The plastic multiplier determined with the RMA is used

to correct the elastic predictor for the plastic effects. Regardless of whether

the current increment is elastic or plastic in the next step of the procedure, the305

failure criterion, in this case Cuntze’s FMC, is evaluated. If the total material

stressing effort Effm is greater or equal than one, the damage variables dft,

dfc, dmt, dmc and ds are updated. After this step the elastic and plastic strain

components are calculated and the nominal stress vector σn+1 is updated con-

sidering the updated damage variables. At the end of the routine, the state310

variables are returned and the consistent tangent stiffness matrix is determined

with the procedure described in the next section. The calculation procedure for

each increment at each integration point is shown in Fig. 2.
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Start of increment

Initial conditions from previous increment:

εen, ε
p
n,∆ε, p̃n, σn

Calculation of effective stresses:

σ̃n = M (d) · σ

Elastic predictor:

εtrialn+1 = εn + ∆ε;

σ̃trialn+1 = σ̃n +De∆ε

Check yield

criterion:

F (σ̃trialn+1 , p̃n) ≤ 0

Update of stress and

strain quantities:

σ̃n+1 = σ̃trialn+1

εn+1 = εtrialn+1

εpn+1 = εpn

p̃n+1 = p̃n

Solve return mapping algorithm to find

Lagrange’s plastic multiplicator: ∆λ

Calculation of corrected stress vector:

σ̃n+1 = (I + ∆λDe ·M ·P)−1 · σ̃trialn+1

Check for failure initiation

with FMC or APSC

Evaluation of

Cuntze’s FMC-based

failure conditions:

FF1, FF2, IFF1,

IFF2, IFF3, Effm

Check global material

stressing effort: Effm ≥ 1

Calculate

damage

evolution:

dft, dfc, dmt,

dmc, ds

Evaluation of Pucks’s

APSC-based stressing

efforts and fracture angle:

fE(FF ), fE(IFF )(θ), θ

Check: fE(FF )

and / or

fE(IFF )(θ) ≥ 1

Calculate general damage

variables: dFF , dIFF

Calculate most direct impacts:

ni, n
+
ij , n

−
ij

Calculate damage for

each component dij from

dFF dIFF , ni, n
+
ij , n

−
ij

Determine effective and nominal

plastic strain vector: dε̃pn+1 = ∆λ ·P · σ̃n+1

Calculate elastic strain vector:

εen+1 = εn+1 − εpn − dε̃
p
n+1

Determine nominal stress vector:

σn+1 = M−1 · σ̃n+1

Update tangent stiffness matrix

and state variables

True

False

FMC

True

False

APSC

True

False

Figure 2: Algorithm flow chart of UMAT subroutine

3.2. Tangent stiffness matrix

Since the described material model is implemented for the implicit solver315

Abaqus / Standard, a tangent stiffness matrix, which is consistent to the stress-
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update algorithm, is required. Din et al. [24] have derived the following operator

to calculate the consistent tangent stiffness for the plasticity model of Sun and

Chen [23] in combination with damage:

Cep =
∂∆σ̃n+1

∂∆εtrialn+1

=

[
(C0)−1 + ∆λP +

1

2σ̄yH̃ζ̃
MnFn

T
F −

∆λ

ζ̃2
MnFn

T
FZP

]−1

(3.4)

In this case nF = P · σ̃n+1, ζ =
√
nTFZnF , H̃ = αβp̃α−1

n+1 and (C0)−1 is the320

compliance matrix of the transversely isotropic material. In the present work,

this operator was transferred to the three-dimensional stress state using the ma-

trices P and Z specified in the sections 2.2 and 3.1. Tests of the implementation

showed poor convergence at beginning of damage. Therefore, the operator 3.4

is only used as long as all damage variables dI are equal to zero. In this case325

the matrix M is always the same as the identity matrix I and the operator

becomes:

Cep =
∂∆σ̃n+1

∂∆εtrialn+1

=

[
(C0)−1 + ∆λP +

1

2σ̄yH̃ζ̃
InFn

T
F −

∆λ

ζ̃2
InFn

T
FZP

]−1

(3.5)

From the beginning of damage on, the tangent stiffness matrix is numeri-

cally determined using the perturbation technique, which is based on forward

difference approximation. The components of Cep are calculated as [45]:330

Cepijkl =
dσij
dεkl

≈ σij(ε̂
kl)− σij(ε)

∆ε
, with ε̂kl = ε+ ∆εkl (3.6)

Here ∆εkl is the perturbation strain for the kl-component and ε̂kl is the

corresponding perturbed strain vector.

3.3. Viscous regularisation

With implicit solvers the degradation of stiffness sometimes lead to conver-

gence problems. The reason for this is a no longer positive definite tangent335

stiffness matrix. To mitigate this problem, Lapczyk and Hurtado [26] have
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proposed the introduction of an artificial viscosity based on the regularisation

model of Duvaut and Lions [46] according to the following equation:

ḋvM =
1

ηM
(dM − dvM ) (3.7)

In this equation ηM describes the relaxation time of the viscous system and

dvM is the regularised damage variable associated with mode I. The regularised

damage variable for the increment n+ 1 is derived according to Chen et al. [2]

as:

dvM,n+1 =
∆t

η + ∆t
dM,n+1 +

∆t

η + ∆t
dvM,n (3.8)

3.4. Characteristic and critical finite element size

For the crack band approach, described in section 2.3, the in-plane char-340

acteristic element length Lc is needed in order to scale the linear degradation

behaviour to the element size. This length Lc for square elements is determined

by Bažant and Oh [42] with the following relationship where AIP is the in-plane

area of the element:

Lc =

√
AIP

cos(γ)
(3.9)

Here |γ| ≤ 45◦ is the angle of the mesh line at which the crack band prop-

agates. For an unknown crack propagation direction Maimı́ et al. [47] showed

that the average of Eq. 3.10 L̄c = 1.12
√
AIP can be used. The solver provides

the characteristic element length Lc,ABQ in the UMAT interface for solid ele-

ments as the cube root of the element volume. For hexahedral elements, which

are used in the presented work, this value must be corrected with the following

formula in order to obtain the in-plane element length, taking into account the

ply respectively element thickness t and the unknown crack direction:

Lc = 1.12 ·

√
L3
c,ABQ

t
(3.10)

The crack band approach assumes an element-wide crack band and adjusts

the degraded modulus to ensure that the correct fracture energy is preserved
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for different element sizes. With this approach the element size has an upper

bound L∗. This so-called critical element size is calculated using the pristine

modulus EM , the critical strain energy GM and the strength XM for each mode

M [42]:

L∗ =
2EMGM
X2
M

(3.11)

If larger elements are used, a softening modulus of −∞ would be determined345

with the crack band approach. This would lead to a sudden stiffness drop. In

practise Bažant and Oh [42] recommend an element size of about half the value

determined for L∗.

4. Numerical results and discussion

To illustrate the applicability and effectiveness of the proposed combined350

elastoplastic damage model several numerical simulations of the progressive fail-

ure behaviour are performed. This section presents the results of three bench-

mark examples to verify the model. In addition, a [±45]2s laminate under tensile

loading was analysed. The validation is carried out with open-hole tension test

specimens with a quasi isotropic (QI) ply stacking sequences. The failure the-355

ories from Puck and Cuntze are also being compared and discussed on this

basis.

4.1. Material and model parameters

Unless otherwise stated, all of the simulations have been performed with

the thermoplastic fibre composite material AS4/PEEK using the material and360

model parameters listed in Tab. 3. The elastic as well as the plastic properties

are adopted from Sun and Yoon [33]. The values for tensile and shear strengths

are taken from Kawai [48] whereas the compressive strengths are obtained from

Sun and Rui [49]. The values for the critical strain energies are adopted from

Carlile et al. [50] and Chen et al. [2]. Since the required parameters for Cuntze’s365

FMC were not available for AS4/PEEK, the values determined by Petersen et

al. [38] for M21/T700GC, a material with a tough epoxy matrix, were used.
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Table 3: Material properties and model parameters for AS4/PEEK

E11 E22 = E33 G12 = G13 G23 ν12 = ν13 ν23
126.7 GPa 10.3 GPa 6.0 GPa 3.45 GPa 0.32 0.49

Rt
‖ Rc

‖ Rt
⊥ Rc

⊥ R⊥‖ η

2023.0 MPa 1234.0 MPa 92.7 MPa 176.0 MPa 82.6 MPa 0.0002

Gft = Gfc Gmt = Gmc Gs a α β
128.0 N/mm 5.6 N/mm 4.93 N/mm 1.5 0.142857 295.0274

The parameters are listed in Tab. 4. The parameters for the APSC by Puck

were chosen according to Puck et al. [51], cf. Tab. 4.

Table 4: Parameters for FMC and APSC

FMC
b⊥‖ b⊥⊥ m
0.44 1.266 2.6

APSC
pt⊥‖ pc⊥‖ pt⊥⊥ pc⊥⊥ m = s

0.35 0.30 0.30 0.30 0.5

4.2. Verification with representative volume elements and periodic boundary370

conditions

This subsection is concerned with the verification of the proposed anisotropic

elastoplastic damage model. The benchmark examples are calculated with cu-

bic single element models with side lengths of 1 mm using reduced integrated

solid elements (C3D8R). The time step in the simulations is determined auto-375

matically with the restriction that the maximum time step is set to 0.005. The

support and the load application are realised with periodic boundary conditions

to be able to apply a load in one specific direction. These periodicity conditions

are achieved by linking the degrees of freedom of the cubic model node-to-node

as well as to reference points. This is done by using a plug-in for Abaqus CAE380

called EasyPBC by Omairey et al. [52]. As an example in Fig. 6 a single ele-

ment model with a pure loading in the 12-direction is shown. In this case, the

element nodes C1, C4, C5 and C8 are coupled with the reference point RP-1,

for instance.

385
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Figure 3: Single element model with periodic boundary conditions with loading in 12-direction

The first benchmark assesses the material model under cyclic tensile-compressive

loading in fibre direction. The resulting stress-strain curve is shown in Fig. 4.

In this verification the cube is discretised with one element. The model is first

loaded in tension beyond initial failure (1). After that, the cube is unloaded (2)

and then loaded in compression beyond initial compression failure (3). Once390

unloaded again (4), the cube is subjected to tensile loads of up to 3 % strain

and significant damage (5). It can be seen that the damage accumulated in the

tensile part is accounted for in the compressive part of the cycle. Vice versa

the compressive damage is considered in the second tensile loading cycle. This

behaviour is in line with the expectations since the damage variables dft and395

dfc are combined with Eq. 2.4 to a total damage variable in fibre direction df .
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Figure 4: Load displacement curves under uniaxial tensile-compressive cycling load in fibre
direction

In the second benchmark example, cf. stress-strain curves in Fig. 5, a cube

is subjected to a tensile load transverse to the fibre direction. Four different

meshes were tested to assess the mesh dependency. Three models have a regular

mesh with one, 27 and 125 elements. The fourth model is also discretised with400

27 elements, but with an irregular mesh. In addition, the models with the

regular meshes were also calculated with the crack band approach switched off.

It can be observed that the stress-strain curves from the models with the crack

band approach show some deviations, but compared to the models without the

approach a significant improvement is achieved. It can therefore be concluded405

that the crack band approach fulfils its purpose. In addition, it can be seen that

the material shows some plasticity over 0.5 % strain in the transverse direction.
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Figure 5: Stress-strain curve of a cubic model subjected to transverse tension loading and
discretised with different meshes

The third benchmark example considers a cubic model, shown in Fig. 6,

again with periodic boundary conditions, subjected to pure shear loading in the

12-direction. The cube is loaded up to a certain point and unloaded again until410

it is stress-free. This cycle is repeated up to total failure at 8 % shear strain.

The resulting stress-strain curve is plotted in Fig. 6. It can be seen that the

plastic strain is taken into account when the load is relieved. Besides that, the

point of the previous loading is reached again when the element is reloaded.

After the strength has been exceeded, the loading and unloading takes place415

with the degraded shear modulus.
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Figure 6: Stress-strain curve of a cubic model subjected to cyclic in-plane shear loading

For all three benchmark examples, it can be stated that the maximum stress,

before degradation begins, corresponds to the specified strengths.

In order to assess the interaction of stresses, test case 2 of the WWFE-II was

adopted. First, the cubic model discretised with one element was loaded with420

different magnitudes of hydrostatic pressure phyd and then in a second step

subjected to a shear loading until failure. The resulting stresses at failure are

plotted in Fig. 7. Since no experimental data are available for the material

used in this work, only a qualitative comparison with results from WWFE-II

can be made. Nevertheless, the calculations in this work are consistent with the425

observations in WWFE-II, as the hydrostatic stresses have an influence on the

shear stress on failure. As the hydrostatic stress decreases, the shear stress at

failure increases.
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Figure 7: Fracture stress τ12 vs. stress phyd(= −σ11 = σ22 = −σ33) following WWFE-II Test
Case 2

4.3. Numerical results of AS4/PEEK [±45◦]2s laminates

To demonstrate the capabilities of the model in terms of plasticity and dam-430

age modelling a tensile test, reported in literature, of a AS4/PEEK [±45◦]2s lam-

inate is numerically analysed. The test coupon of Lafarie-Frenot and Touchard’s

[17] experiment has the dimensions 230 mm x 20 mm x 1 mm. In the numerical

analysis the laminate is modelled with eight stacked elements, where each ply

consists of one C3D8R element. The thickness of the model is with 1 mm equal435

to the experiment. The other two dimensions are also 1 mm. Using periodic

boundary conditions, the model behaves like a representative volume of the test

specimen. The model is shown in Fig. 8.

In Fig. 9 the stress-strain curves of the experimental test as well as the

curve generated by the presented model are plotted. It can be observed that440

the elastoplastic material model is able to reproduce the experimental behaviour

very well. For comparison, the same model was calculated with a variant of the

presented material model without plasticity. While the predicted strength is

comparable, the elongation at failure is clearly too low.

4.4. Progressive damage analyses of open-hole tension specimens445

In this subsection the capabilities of the proposed elastoplastic / damage

model are demonstrated. For this, the material model is used to analyse the

27



−45◦
45◦
−45◦
45◦
45◦
−45◦
45◦
−45◦

x, 0◦

y, 90◦

z

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

��

◦
RP-4

◦
RP-3

◦
RP-2

◦
RP-1

◦
RP-6

Figure 8: Finite element model of AS4/PEEK [±45◦]2s tensile test with periodic boundary
conditions
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Figure 9: Experimentally and numerically determined stress-strain curves of an AS4/PEEK
[±45◦]2s tensile test
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progressive failure of AS4/PEEK open-hole tension specimens with a quasi-

isotropic [0/45/90/ − 45]2s-layup and different geometries. The experimental

results are taken from [53]. In addition, the failure behaviour of the specimens450

is also predicted with the APSC failure criterion by Puck. On this basis, a

comparison in terms of prediction accuracy and computation time between the

two failure criteria used in combination with the proposed model is performed.

Girão Coelho et al. [54] state that symmetry can be used to reduce the simula-

tion expense, but not in the loading direction, since the restraining conditions455

may change the stress field. Therefore, all simulations are performed modelling

1/4 of the specimens. The geometry and boundary conditions of the model are

shown in Fig. 10. The open-hole tension specimens are loaded with a displace-

ment load applied to one end. The time step is limited to a maximum value of

0.02.460

δ

l
t
2

d

w
2

Z-symmetry

Y-symmetry

y

x

z

Figure 10: Sketch of model geometry and boundary conditions

4.4.1. Element type and size

In order to save computation time and minimise the tendency for shear

locking reduced integrated linear solid elements (C3D8R) are used. The element

size must be chosen in a way that the premise of the crack band approach is

complied: The band width, where the damage localises in, is equivalent to the465

element dimension. Elements sized larger than the damage process zone would

lead to a local snap back. Using the crack band approach with elements that are

too small would lead to an incorrect stress field. With Eq. 3.11 the maximum

element size L∗ = 1.56 mm is determined. Bǎzant and Oh [42] recommend
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using an element size of about half the value calculated for L∗. In the case470

of the material parameter used for AS4/PEEK this leads to an element size of

0.78 mm. In order to check the determined element size a strength prediction

study with different meshes from 0.5 mm to 1.0 mm was performed. In through-

thickness direction every ply is discretised by one element and the element edges

are not aligned with ply orientation. The specimen considered for this purpose475

has the dimension l = 100 mm, w = 20 mm, t = 2 mm and d = 5 mm. The

results of the study are shown in Tab. 5.

Table 5: Comparison between strength prediction of open hole tension specimen with 5 mm
hole diameter with different meshes and experiment (15.514 kN).

In-plane Predicted Deviation
edge length strength to experiment

mm kN %

0.500 14.455 −5.58
0.625 15.589 1.82
0.750 15.598 1.88
0.780 15.451 0.92
0.875 15.137 −1.13
1.000 16.903 +10.40

The results show that a small element size leads to an underestimation

whereas a too large element size leads to an significant overestimation of the

failure load. With less than 2 % the deviation between experiment and numeri-480

cal analysis is small for element sizes in the range of the recommended element

size of 0.780 mm. The deviation is with -0.92 % the smallest for the previously

determined element size of 0.780 mm. Therefore, when using the material model

in combination with the crack band approach, it is recommended that the ele-

ment size used is based on that recommended by Bǎzant and Oh. Consequently,485

this element size is also used for all analyses in this work. Unfortunately, Maa

and Cheng do not give the standard deviation for the experimental results in

[53].
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4.4.2. Stiffness comparison between experimental and numerical gained load dis-

placement curve490

In the experimental campaign of Maa und Cheng [53] a clip gauge with a

blade spacing of E = 30 mm was mounted in the middle of the specimens. The

resulting load-displacement curve for one specimen (l = 100 mm, w = 20 mm,

t = 2 mm and d = 5 mm), cf. Fig. 11, is used to perform a comparison between

experiment and numerical prediction with the proposed material model. It can495

be seen that the stiffness of the specimen is well reproduced by the model. How-

ever, a slightly larger deviation occurs after about 0.1 mm applied displacement

and the numerical simulation overestimates stiffness in the experiments by 5.5

%.

500
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5,000
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Figure 11: Comparison between the calculated and the measured clip gauge load-displacement
curve for an open-hole tension specimen (AS4/PEEK, l = 100 mm, w = 20 mm, t = 2 mm
and d = 5 mm)

4.4.3. Strength prediction of specimens with [0/45/90/− 45]2s-layup

Strength predictions for ten different open-hole tension specimens varying

in geometry were performed with the proposed material model using Cuntze’s

FMC as well as using the APSC by Puck. Two series of specimens, which differ

in the width w, were investigated. For the series with a specimen width of 20505

mm as well as for the series with a width of 30 mm, five specimens with hole
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diameter to width ratios d/w between 0.1 and 0.5 were analysed. The analyses

were terminated when a load drop of at least 25 % occurred. In Tab. 6 the

experimentally determined as well as the numerically predicted strengths are

summarised. In addition, the differences between experiment and analysis is510

also stated in Tab. 6.

Table 6: Comparison of strength predictions for OHT specimens with experimental results
from Maa and Cheng [53] (thickness t = 2 mm, length l = 100 mm)

Cuntze’s FMC Puck’s APSC

w d d/w Experiment [53] Prediction Diff. Prediction Diff.

mm mm � kN kN % kN %

� 2 0.10 22.98 22.10 -3.84 23.47 2.11

� 3 0.15 19.31 19.26 -0.27 20.60 6.69

20 5 0.25 15.31 15.35 0.28 17.28 12.85

� 8 0.40 11.67 11.64 -0.30 12.30 5.42

� 10 0.50 9.22 9.71 5.28 10.25∗ 11.19∗

� 3 0.10 30.62 30.34 -0.91 32.21 5.18

� 6 0.15 24.06 22.17 -7.85 24.21 0.62

30 10 0.25 18.51 17.94 -3.11 17.89 -3.35

� 12 0.40 17.87 16.58 -7.21 17.58∗ -1.61∗

� 15 0.50 14.16 13.47 -4.87 13.89 -1.92

The deviation of the predicted strength of the series with 20 mm width using

the FMC lies between −3.84 % and 5.28 %. Compared to this, the interval of

the deviation when using the APSC is with a difference between 2.11 % and515

12.85 % a little larger. It must be noted that for the specimens marked with ∗ no

convergence could be obtained with the standard settings described in section

4.1. Nevertheless, to get a solution, the value η for the viscous regularisation

was set to 0.002. This may cause the determined failure loads to be higher than

with the default settings and may explain the relatively high deviation of 11.19520

% of the specimen with 10 mm hole diameter compared to the other results.

The deviation of the prediction using Cuntze’s FMC of the second series with a
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width of 30 mm is slightly higher compared to the first, but the intervall of the

deviations is nearly the same. The differences are between −7.85 % and −0.91

%. With deviations ranging from −3.35 % to 5.18 % the prediction accuracy525

of the APSC-based prediction is comparable to the results obtained with the

FMC. In general, it can be said that all analyses provide a satisfactory deviation

between the predicted and experimentally determined failure loads. In addition,

it can be deduced that the FMC usually underestimates the failure load, while

the APSC tends to overestimate the failure strength.530

The structural behaviour of the first series (w = 20 mm) of experiments

was also predicted by several other authors. An overview is given in Tab. 7.

For example Chen et al. [2] use the same plasticity model but combined with

the failure criterion of Hashin and continuum shell elements. Their prediction535

is afflicted with errors between −5.8 % and +14.8 %. However, unlike the

prediction with the model proposed in this work, there is a dependency of the

error to the d/w ratio. For low values of d/w the failure load is underestimated

and for high values it is overestimated. The same trend can be observed in the

prediction of Maa and Cheng [53], who originally performed the experimental540

study. They use two different versions of a continuum damage model with their

own failure criterion and a non-linear Ramberg-Osgood relationship to model

the non-linear behaviour in shear combined with reduced integrated plane-stress

shell elements. The second models of Maa and Cheng [53] contains a modified

fibre failure criterion.545
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Table 7: Comparison of predicted failure loads from different FE analyses

d in mm Error in %

� Present Chen et al. [2] Maa and Cheng [53]

� FMC APSC � Model 1 Model 2

2 -3.84 2.11 -5.79 -15.25 -5.61

3 -0.27 6.69 -6.15 -41.67 -8.60

5 -0.28 12.85 7.33 -27.58 0.20

8 0.30 5.42 12.30 -16.00 6.77

10 5.28 11.19 14.77 -6.34 16.81

In summary, the strength prediction of the open-hole tension specimens us-

ing the proposed material model in combination with Cuntze’s FMC as well as

Puck’s APSC is fairly accurate, especially when compared to other predictions.

Parts of the deviation could be attributed to the fact that the parameters of the

FMC as well as of the APSC were not determined for the considered material.550

4.5. Predicted load-displacement curves

Fig. 12 shows the resulting load-displacement curves for the series with a

width of w = 20 mm and the FMC-based material model. It can be observed

that the predicted stiffnesses of the various test specimens are initially almost555

identical. As the load increases, the difference between the stiffnesses becomes

larger. The larger the hole diameters are, the lower are the stiffnesses as the net

cross section is reduced. The failure displacements behave in exactly the same

way. Due to the lower failure load with larger hole diameters and a stiffness of

the same magnitude, the displacement at failure is lower for large hole diameters.560

Two points are marked in the load-displacement curve of the specimen with a

hole diameter of d = 5 mm. Point A indicates the damage progress at which

the load-bearing capacity of the structure is no longer given. In addition, the

point at which the analysis was aborted is marked as point B.
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Figure 12: Load-displacement curves of AS4/PEEK [0/45/90/−45]2s open-hole tension spec-
imens predicted with Cuntze’s FMC

4.5.1. Damage progression in open-hole tension specimen565

The fibre damage progression df in a 0◦-ply of the specimen with 5 mm hole

diameter is shown in Fig. 13 at the points A and B.

(a) df at A (b) df at B

Figure 13: Fibre damage evolution in a 0◦-ply of open-hole tension specimen

It can be seen that the damage evolution is perpendicular to the fibre and
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loading direction x in a line starting from the middle of the specimen at the

hole. The slightly curved shape of the damage path can be attributed to the dis-570

ordered mesh. At the point of loss of load bearing capacity only three elements

are damaged, whereas nearly the whole net section is damaged when the load

has dropped to 75% of the failure load. Fig. 14 shows the transverse matrix

damage evolution. At point A the transverse matrix damage dm in a 90◦-ply is

concentrated around the hole in the specimen. No element is completely dam-575

aged at this stage. Further damage progression up to state B leads to x-shaped

damage which is nearly symmetrical to the YZ plane. Fully damaged elements

can be found in an area perpendicular to the loading direction, that is three

times wider than the fibre damage area in the 0◦-ply.

(a) dm at A (b) dm at B

Figure 14: Transverse matrix damage evolution in a 90◦-ply of open-hole tension specimen

As can be seen in Fig. 15, the shear matrix damage progression ds in a580

−45◦-ply at point A is concentrated around the edge of the hole. No elements

are totally damaged yet. During further loading up to point B the damage

progresses towards the outer edge of the specimen. Different from the fibre

and transverse matrix damage the damage growth is not perpendicular to the
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loading direction, but is perpendicular to the fibre direction of the −45◦-ply.585

(a) ds at A (b) ds at B

Figure 15: Shear matrix damage evolution in a −45◦-ply of open-hole tension specimen

The predicted intralaminar failure patterns using the proposed methodology

are in line with the findings of other authors [10, 24], analysing open-hole tension

specimens with a quasi-isotropic layup. For example, they also observed x-

shaped transverse matrix cracks in the 90◦-plies. The observed band of fibre

failures perpendicular to the loading direction starting in the middle of the590

specimen from the edge of the hole leads to the expected net section failure

mode. As reported in literature, this failure mode causes the total failure of

the specimen in experiments [10]. The distinction between transversal matrix

damage and those under shear load is not made in other studies as the failure

criteria used, unlike the FMC, do not distinguish between the different modes595

of matrix failure.

4.5.2. Accumulated plastic strain in open-hole tension specimen

Fig. 16 shows the accumulated equivalent plastic strain p̃ in a 90◦-ply and a

−45◦-ply of the specimen with a 20 mm width and 5mm hole diameter. It can
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be seen that the highest plastic strain in both cases is at the edge of the hole in600

the middle of the long side of the specimen. However, the values of accumulated

equivalent plastic strain differ by more than one order of magnitude from 0.005

in the 90◦-ply to 0.018 in the −45◦-ply position. Both contour diagrams show

a X-shaped strain distribution. This is an expected result for the −45◦-ply as

reported for example by Flatscher et al. [55] for a pure ±45◦-layup. The plastic605

strain in the 90◦-ply, which is located between the two 45◦-plies, also seems to

be dominated by the surrounding 45◦-plies.

(a) p̃ in 90◦-ply (b) p̃ in -45◦-ply

Figure 16: Accumulated plastic strain at point A in open-hole tension specimen with d = 5
mm

4.5.3. Detailed comparison of progressive damage analyses with Cuntze’s FMC

and Puck’s APSC

The detailed comparison of the progressive damage analyses with Cuntze’s610

FMC and Puck’s APSC is performed at the example of the open-hole tension
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specimen with a hole diameter d = 5 mm and a width w = 20 mm. However, the

findings hold true also for the other specimens analysed. In Fig. 17 the resulting

load-displacement curves from both analyses are plotted. It can be observed

that the predicted stiffness of the specimen is the same for both versions of615

the material model. As with all analysed specimens, the predicted failure load

with the APSC is bigger than the load predicted by the FMC. In order to

gain further insights, the damage initiation points are marked in the diagram.

The initial transverse matrix damage is marked by an A and B marks the first

matrix damage in shear. The start of fibre damage is marked with point C. The620

subscript �P assigns the points belonging to the prediction with Puck’s APSC

and the subscript �C to the one with Cuntze’s FMC. It can be seen that the

transverse matrix damage initiates at nearly the same load level. The in-plane

shear matrix damage with the material model using Puck’s APSC (BP ) starts

at the same load level as transverse matrix damage (AP ) due to the formulation625

of damage variables. This point is predicted much later with Cuntze’s separate

formulation for interfibre failure under shear stress (IFF3), cf. BC . Although the

fibre failure criterion is the same for both theories, the predicted fibre damage

initiation is slightly different. This may result from different interfibre damage

progression and consequently varying load redistributions. The deviation in the630

predicted failure load may also be attributed to this behaviour.

In order to assess the influence of the additional iterative fracture angle

search as well as the additional algorithms to divide the damage portions from

the interfibre fracture according to the fracture angle between the different stress

components the computational expenses of the simulations with the FMC and635

the APSC are compared. At this point it should be mentioned that the fracture

angle search causes the majority of the additional computing time. All simula-

tions were performed with the same solver settings on a workstation with two

Intel Xeon E5-2643 processors (4 CPU cores, 10 MB Cache, 3.3 GHz per proces-

sor) and 32 GB RAM using two CPU cores. The models consist of about 15000640

elements with about 55000 equations in total. The results regarding number of

increments, the total CPU time and the average time per increment are listed
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Figure 17: Comparison of predicted load-displacement curves of AS4/PEEK [0/45/90/−45]2s
open-hole tension specimens (d = 5 mm, w = 20 mm)

in Tab. 8.

Table 8: Comparison of computational expense of proposed material model with different
failure criteria on the basis of an open-hole tension specimens (QI, w = 20 mm)

Failure d Nr. of Total CPU Average time per

criterion in mm increments time in s increment in s

2 1231 60349 49.02

3 1212 36363 30.00

Cuntze’s FMC 5 1162 31690 27.27

8 993 24641 24.81

10 548 12786 23.33

2 1492 113233 75.89

3 1601 96726 60.42

Puck’s APSC 5 6965 240945 34.27

8 2128 67144 31.55

10 24837 682476 27.48

It can be seen that the analysis of the same model model takes always more

increments as well as more CPU time when using the APSC. The higher number645

of increments needed for the model with Puck’s APSC can partly be attributed
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to the fact that the load bearing capacity is preserved for a longer time after

the damage has been initiated compared to the prediction with Cuntze’s FMC.

This effect is intensified by the fact that the time step decreases with the onset

of the damage. Furthermore, the average time per increment is always higher650

if the APSC is used. This can be explained by the additional effort required

for the iterative fracture angle search and the split of the interfibre damage.

The model with the FMC from Cuntze is, as expected, more efficient in the

calculation. Measures to increase the numerical efficiency of the APSC, such as

the golden section search [56, 57] are not considered in this work. They shorten655

the computing time but, unlike the FMC, still require additional algorithms.

5. Conclusions

A combined elastoplastic CDM-based damage model for solid elements has

been proposed in this work. The main components of the model are a one pa-

rameter plasticity model from Sun and Chen [23] and Cuntze’s FMC [28]. For660

comparison, also a version of the material model with Puck’s APSC has been

proposed and implemented. The analysis of a tensile test specimen made from

AS4/PEEK with a [±45]2s-layup shows the necessity to account for plasticity

in the progressive damage analysis of fibre composite materials with tough ma-

trix materials. The validation with open-hole tension tests points out that the665

non-linear behaviour prior to first damage of the specimen is well reproduced by

both version of the material model. In addition, the proposed material model

allows an accurate prediction of the failure behaviour and strength of open-hole

tension specimens with different geometries and d/w-ratios both with the FMC

from Cuntze and with the APSC from Puck. It was highlighted that analy-670

ses with the FMC usually yield conservative strengths, while the failure load

is overestimated by the APSC in most cases. The analysis results of one test

specimen (w = 20 mm, d = 5 mm) were compared in more detail. The results

show that the prediction of the first transverse matrix damage and the first fibre

failure is almost identical with both failure theories. However, the prediction of675
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matrix damage under shear stress is different. With the FMC, the degradation

of the shear modulus begins at a significantly higher load. Using this example

it can also be demonstrated that the FMC is numerically more efficient than

the APSC since the time-consuming iterative fracture angle search is no longer

necessary.680

Validation with own experimental results and a different material, preferably

with failure criterion parameters determined for this material, would be bene-

ficial. In this context, further data for example from digital image correlation

and acoustic emission measurements, could also be used for even more in-depth

validation.685
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