Fontan Villacampa, Alejandro und Civera, Javier und Triebel, Rudolph (2020) Information-Driven Direct RGB-D Odometry. In: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2020, Seiten 4928-4936. IEEE. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2020-06-13 - 2020-06-19, Seattle, WA, USA, USA. doi: 10.1109/CVPR42600.2020.00498. ISBN 978-172817168-5. ISSN 1063-6919.
PDF
6MB |
Kurzfassung
This paper presents an information-theoretic approach to point selection for direct RGB-D odometry. The aim is to select only the most informative measurements, in order to reduce the optimization problem with a minimal impact in the accuracy. It is usual practice in visual odometry/SLAM to track several hundreds of points, achieving real-time performance in high-end desktop PCs. Reducing their computational footprint will facilitate the implementation of odometry and SLAM in low-end platforms such as small robots and AR/VR glasses. Our experimental results show that our novel information-based selection criteria allows us to reduce the number of tracked points an order of magnitude (down to only 24 of them), achieving an accuracy similar to the state of the art (sometimes outperforming it) while reducing 10× the computational demand.
elib-URL des Eintrags: | https://elib.dlr.de/135184/ | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Konferenzbeitrag (Vortrag) | ||||||||||||||||
Titel: | Information-Driven Direct RGB-D Odometry | ||||||||||||||||
Autoren: |
| ||||||||||||||||
Datum: | 17 Juni 2020 | ||||||||||||||||
Erschienen in: | 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2020 | ||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||
Open Access: | Ja | ||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||
In ISI Web of Science: | Ja | ||||||||||||||||
DOI: | 10.1109/CVPR42600.2020.00498 | ||||||||||||||||
Seitenbereich: | Seiten 4928-4936 | ||||||||||||||||
Verlag: | IEEE | ||||||||||||||||
ISSN: | 1063-6919 | ||||||||||||||||
ISBN: | 978-172817168-5 | ||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||
Stichwörter: | Computer Vision, SLAM, Visual Odometry | ||||||||||||||||
Veranstaltungstitel: | 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) | ||||||||||||||||
Veranstaltungsort: | Seattle, WA, USA, USA | ||||||||||||||||
Veranstaltungsart: | internationale Konferenz | ||||||||||||||||
Veranstaltungsbeginn: | 13 Juni 2020 | ||||||||||||||||
Veranstaltungsende: | 19 Juni 2020 | ||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||
HGF - Programmthema: | Technik für Raumfahrtsysteme | ||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||
DLR - Forschungsgebiet: | R SY - Technik für Raumfahrtsysteme | ||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Multisensorielle Weltmodellierung (E3D OS) [SY] | ||||||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||||||
Institute & Einrichtungen: | Institut für Robotik und Mechatronik (ab 2013) > Perzeption und Kognition | ||||||||||||||||
Hinterlegt von: | Fontan Villacampa, Alejandro | ||||||||||||||||
Hinterlegt am: | 30 Nov 2020 14:13 | ||||||||||||||||
Letzte Änderung: | 24 Apr 2024 20:37 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags